Freescale Platform

Reference Manual

Document Number: FSPRM
Rev. 1.0
01/2008

>

2 freescale"

semiconductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2007, 2008. All rights reserved.

Contents

ADOUL ThisS BOOK. . ..o Y
AUAIBNCE . . ot Y
Organizationottt e e Y
CONVENTIONS .\ttt e e e e e v
Definitions, Acronyms, and Abbreviations i vi
RETEIENCES. . . o\ vii
REVISION HIStOrYo vii
Chapter 1
Introduction
Chapter 2
Task Scheduler
2.1 Task Scheduler OVEIVIEW.ottt e e e 2-1
2.2 Task Scheduler Properties e 2-2
2.2.1 GTSMaAXTaASKS € ..ottt e 2-2
2.3 Task Scheduler API 2-2
231 TS ClearEVeNt . .o 2-2
2.3.2 TS CreateTask . . oot 2-2
2.3.3 TS DeStrOYTasK . . o oo 2-3
234 TS PendingEVeNtS 2-3
2.35 TS SeNUEVENE .. 2-3
Chapter 3
Timer
3.1 TIMEr OVEIVIBW . o .ottt e e e e e e e e e 3-1
3.2 TIMEr PrOPEItIES . . o v ettt e e e 3-2
3.2.1 gTMrAPPHCAIONTIMEIS_C . . o ottt e e e e 3-2
3.8 THMEr APl . 3-2
331 TMR_AIOCAtETIMEr .o e 3-2
3.3.2 TMR_AreAlITIMersOff e 3-2
3.3.3 TR FreeTIMer . . ottt e e e e e e 3-2
3.34 TMR_ISTIMEIACHIVE . . e 3-3
3.35 TMR_Startinterval Timer e e 3-3
3.3.6 TMR_StartSingleShotTimer. e e e 3-3
3.3.7 TMR S OPTIMEY . . o ot e e e 3-4
Chapter 4
LED
41 LED OVeIVIBW . ittt 4-1
4.2 LED Properties . . oottt e e e 4-1
4.2.1 gLEDSUpported d o 4-1
4.2.2 gLEDBIIpENnabled d. e 4-2

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor i

4.3 LED APl . 4-2

43.1 LED TurnOffLed e 4-2
4.3.2 LED TurnONLed 4-2
4.3.3 LED _ToggleLed. e 4-2
4.3.4 LED_StartFlash 4-3
4.35 LED_StopFlash. 4-3
4.3.6 LED StartSerialFlash. e 4-3
4.3.7 LED_TurnOffAIILEdS e 4-3
4.3.8 LED TurnONAIILEAS. . ..o e e e e 4-4
4.3.9 LED_StopFlashingAlILeds. e e 4-4
4.3.10 LED Setled e 4-4
4.3.11 LED _SetHEX. . .\ttt 4-4
Chapter 5

Display

5.1 Display OVeIVIBWot 5-1
5.2 Display Properties.o e e 5-1
521 gLCDSUPPOIted _d ..o 5-1
5.3 DISplay APl . o 5-1
53.1 LCD _ClearDisplay oot 5-1
5.3.2 1] 0 1 5-2
5.3.3 LCD WIteBYES . . . ot 5-2
534 LCD WIeStIING . . oot e e e 5-2
5.35 LCD_WriteStringValueo 5-3
Chapter 6

Keyboard

6.1 Keyboard OVerview e 6-1
6.2 Keyboard Properties 6-1
6.2.1 gKeyBoardSupported _d ... e 6-1
6.2.2 gKeyScaninterval C i 6-2
6.2.3 gLONGKEYIEratioNS_Cottt 6-2
6.3 Keyboard APl 6-2
6.3.1 KB INit . 6-2
Chapter 7

UART

7.1 UART OVeIVIBW. o .ottt e e e e e e e e e e e 7-1
7.2 UART PrOPEItIES . .ottt e e e e e 7-2
7.2.1 gUartl Enabled d e 7-2
7.2.2 gUart2 Enabled d e 7-2
7.2.3 gUart_PortDefault_d. 7-2
7.2.4 gUart_TransmitBuffers _C.......... .. e e e e 7-2

Freescale Platform Reference Manual, Rev. 1.0

ii Freescale Semiconductor

7.25 gUart_ReceiveBUfferSize C......... ... i e e 7-3

7.2.6 gUart_RxFlowControlSkew d. i 7-3
7.2.7 gUart_ RxFlowControlResume d......... i i 7-3
7.3 UART APl o 7-3
731 Uart ClearErmors. 7-3
7.3.2 UartX SetBaud. e 7-4
7.3.3 Uart X Transmit . ..o 7-4
7.3.4 Uart X ISTXACHIVE . . 7-4
7.35 UartX _SetRxCallBack 7-5
7.3.6 UartX_GetByteFromRxBuffer 7-5
7.3.7 UartX _UNQetBY e oo 7-5
Chapter 8

Non-Volatile Memory

8.1 Non-Volatile Memory OVEIVIEWt e 8-1
8.2 Non-Volatile Memory Properties 8-2
8.2.1 gNvStoragelncluded d........ ... e 8-2
8.2.2 gNVNUMDBDErOfDAtaSetS Co 8-2
8.2.3 gNVMINIMUMTICKSBEIWEENSAVES Cottt et e e e e 8-2
8.2.4 ONVCOUNISBEIWEENSAVES C. . v vttt e e e e 8-2
8.3 Non-Volatile Memory APl 8-3
8.3.1 NvSaveOnldle. o 8-3
8.3.2 NVSaveONnINnterval 8-3
8.3.3 NVSAVEONCOUNT . . . e e e 8-3
8.34 NVISDAtaSEtDIITY oot 8-3
8.3.5 NVRESIOrEDAtaSet.t 8-4
8.3.6 NVClearCriticalSection.o e 8-4
8.3.7 NVSetCriticalSeCction 8-4
Chapter 9

Low Power Library

9.1 Low Power Library OVEIVIEW 9-1
9.2 Low Power Library Propertiesot e e 9-1
9.2.1 gRxOnWhenldle_d/gLpmincluded d 9-1
9.2.2 CPWR_DeepSleepModeo 9-2
9.2.3 CPWR _SIeepMOdeo e 9-2
9.24 CPWR_RTITICKTIME . . oo e 9-2
9.3 Low Power Library APl 9-3
9.3.1 PWR_CheckIfDeviceCanGoToSIeep. . ..o v i 9-3
9.3.2 PWR _ENIerLOWPOWET e 9-3
9.3.3 PWR_DisallowDeViCeTOSIEeP.o e 9-4
9.34 PWR_AIIOWDEVICETOSIEED oot e e 9-4

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor iii

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor

About This Book

The Freescale Platform Reference Manual describes in detail the API to the Freescale platform
components shared among Freescale networking solutions (for example, BeeStack, the Freescale IEEE
802.15.4 MAC, and the Freescale Simple MAC). Many components interact with reference hardware such
as switches, the LCD and LEDs. Other components include timers and the task scheduler.

Audience

This document is for engineers developing BeeStack or other 802.15.4 networking applications.

Organization

This document is organized into the following sections.

Chapter 1 Introduction — provides an overview of all the platform components and where
they can be found in the directory structure in a BeeStack project.

Chapter 2 Task Scheduler — describes the task scheduler API and compile-time options

Chapter 3 Timer — describes the timer APl and compile-time options.

Chapter 4 LED - describes the LED API and compile-time options.

Chapter 5 Display — describes the LCD API and compile-time options.

Chapter 6 Keyboard — describes the keyboard API and compile-time options.

Chapter 7 UART - describes the UART (SCI port) API and compile-time options.

Chapter 8 Non-\Volatile Memory — describes the non-volatile memory APl and compile-time
options.

Chapter 9 Low Power Library — describes the lower power API and compile-time options.

Conventions

This document uses the following conventions:

Courier — Is used to identify commands, explicit command parameters, code examples,
expressions, data types, and directives.

Italic — Is used for emphasis, to identify new terms, and for replaceable command parameters.
All source code examples are in C.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor Y,

Definitions, Acronyms, and Abbreviations

The following list defines the abbreviations used in this document.

APS
APL
BDM

BeeKit
Binding
Cluster

EVB
GUI

HCS08
IDE

MAC
MC13193
MCU

NCB

Node
NWK
Oul

PAN

Profile
SARD
SMAC

SRB
SCI

SPI

Application Support sub-layer, a ZigBee stack component
Application Layer, a ZigBee stack component

Background Debug Mode: The HCS08 MCUs used here have a BDM port that
allows a computer to program its flash memory and control the MCU's operation.
The computer connects to the MCU through a hardware device called a BDM pod.
In this application, the pod is the P&E USB HCS08/HCS12 Multilink

Freescale Wireless Connectivity Toolkit networking software
Associating two nodes in a network for specific functions (e.g., a light and switch)

A collection of attributes accompanying a specific cluster identifier (sub-type
messages.)

Evaluation Board, a Freescale development board

Graphical User Interface: BeeKit and CodeWarrior, the two Windows tools
discussed here, each uses a GUI

A member of one of Freescale's families of MCUs

Integrated Development Environment: A computer program that contains most or
all of the tools to develop code, including an editor, compiler, linker, and debugger

IEEE 802.15.4 Medium Access Control sub-layer
One of Freescale's IEEE 802.15.4 transceivers

Micro Controller Unit: A microprocessor combined with peripherals, typically
including memory, in one package or on one die

Network Coordinator Board, a Freescale development board
A device or group of devices with a single radio
Network Layer, a ZigBee stack component

Organizational Unique Identifier (The IEEE-assigned 24 most significant bits of
the 64-bit MAC address)

Personal Area Network
Set of options in a stack or an application
Sensor Application Reference Design, a Freescale development board

Freescale Simple MAC, a very simple, very small proprietary wireless protocol
that uses the Freescale IEEE 802.15.4 radios

Sensor Reference Board, a Freescale development board

Serial Communication Interface. This is a hardware serial port on the HCS08.
With the addition of an external level shifter, it can be used as an RS232 port

Serial Peripheral Interface. This is a serial port intended to connect integrated
circuits that are together on one circuit board

Freescale Platform Reference Manual, Rev. 1.0

vi

Freescale Semiconductor

SSP
Stack
Toggle

UART

Ul

ZC

ZED

ZR
802.15.4

References

Security Service Provider, a ZigBee stack component
ZigBee protocol stack

A toggle switch moves from one state to its other state each time it is toggled. For
instance, if the first toggle takes the switch to Off, the next toggle will be to On,
and the one after that will be to Off again. In the applications this document
describes, the switches are momentary push buttons with no memory of their
states. The HCS08 maintains each switch's state

Universal Asynchronous Receiver Transmitter, an MCU peripheral for access to
devices not on the same circuit board. With level shifting, the UART implements
RS-232

User Interface

ZigBee Coordinator: one of the three roles a node can have in a ZigBee network
ZigBee End Device: one of the three roles a node can have in a ZigBee network
ZigBee Router: one of the three roles a node can have in a ZigBee network

An IEEE standard radio specification that underlies the ZigBee specification

The following documents were referenced to build this document.
» Freescale BeeStack Software Reference Manual, Document BSSRM, February 2007.
* The data sheets for the MC13193, MC13203, MC13213 radios
» Freescale MC9S08GB/GT Data Sheet, Document MC9S08GB60, December 2004
» Freescale MC9S08QE128 Reference Manual, Document MC9S08QE128RM

Revision History

The following table summarizes revisions to this manual since the previous release (Rev. 0.0).

Revision History

Doc. Version Description / Location of Changes

1.0 Added MC9S08QE128 specific notes.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor

Vii

Freescale Platform Reference Manual, Rev. 1.0

Viii Freescale Semiconductor

Chapter 1
Introduction

This section provides an overview of all the platform components and where they can be found in the
directory structure in a BeeStack project. This document is a reference manual, not a tutorial. For advice
on using the platform components, see the Freescale BeeStack Application Development Guide.

Platform components generally interact with hardware and are designed in such a way as allow
applications to modify these components for custom boards or situations. For example, the Non-Volatile
Memory (NVM) API is designed so that if the storage that is readily available is not native flash, but static
RAM or 12C, then the NVM code can be replaced and will still function the same from the application
perspective. Likewise, the LED, LCD and keyboard other interfaces can be easily adapted to suit any
hardware.

Platform components come with full source, as they are intended to be modified for any particular board
design.
The platform components include
» Task scheduler — Allows non-preemptive, prioritized scheduling
» Timer — Allows events to be occur on a time basis
* LED - provides the ability to set and blink Light Emitting Diodes
* LCD - provides multi-line Liquid Crystal Display
» Keyboard — provides basic button presses
* UART - provides interaction with a host processor or desktop PC
* NVM - Non-volatile memory provides permanent storage
* LPM - Low Power Module

Most platform components can be found in the Platform Module (PLM) directory. The task scheduler can
be found in the System Support Module (SSM) directory as shown in Figure 1-1.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 1-1

Introduction

= C3) Ha onoffLight
|C3) Beenpps
I3 bim
I MacPhy
= I5) PLM
|50 Inkerface
I3 PRM
= 153 Source
I Common
I Display
I Keyboard
I Led
I Lem
50 MM
[RsST
I3 Sound
I Tempsensaor
I MR
I uaRT
= 155 55M
=hTs
I z7C

Figure 1-1. Platform Component Directory Structure

Freescale Platform Reference Manual, Rev. 1.0

1-2 Freescale Semiconductor

Chapter 2
Task Scheduler

The task scheduler is a non-preemptive priority based scheduler, used to conceptually separate various
portions of BeeStack, or any Freescale network that uses the task scheduler.

2.1 Task Scheduler Overview

In BeeStack, the application is contained in one task by default but can be split up into multiple tasks for
a particularly complex application.

The MCU interrupts operate independently of tasks, and may often pass control to a task through the use
of the TS_SendEvent() function.

The following table shows task priorities in the system.
Table 2-1. Task Priorities

Priority Description
0 Idle task
1-63 Platform component task priorities
64 — 191 gTsAppTaskPriority _c — Application Task priority default
192 - 198 BeeStack task priorities
254 Timer task

Freescale recommends that applications use a task priority between 64 and 191. This allows BeeStack to
use priorities both lower and higher than the application as appropriate for the networking task.

Each task must have the following event handler for the task. Initialization code for a task is optional. Each
event is a single bit in an event bit mask, and is defined by the task. Multiple events may be set at the same
time.

void TaskEventHandler

(

event_t events
):
Some functions use a combination of an event bit and a message queue to communicate data, for example

on the BeeAppDatalndication() function, multiple indications may be waiting, each in a separate message
buffer. The messages are removed from a queue of messages.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 2-1

Task Scheduler

2.2 Task Scheduler Properties

2.2.1 gTsMaxTasks_c

C Module Property gTsMaxTasks _C

BeeKit Property Name TS: Number of Tasks

BeeKit Component Containing BeeKit Property SSM

The property gTsMaxTasks_c can be set in BeeKit (property TS: Number of tasks from the SSM
component) to allow for a maximum number of tasks in the system. At initialization time, all of the tasks

necessary for BeeStack are created using TS_CreateTask(). The default is 15. Currently BeeStack uses 11
tasks, plus 1 task for the application (a total of 12). The other 3 are available for task creation at run-time. |

2.3 Task Scheduler API

2.3.1 TS ClearEvent

Prototype

void TS_ClearEvent

(
tsTasklD_t taskID,/* IN: Which task. */

event_t events/* IN: Which event(s) to clear. */

);

Description

Use TS_ClearEvent() to clear event bits prior to the event firing. Event bits are cleared by the task
scheduler automatically prior to a task receiving control. This function might be used when resetting a task,
for example, so that any pending events won’t fire.

2.3.2 TS CreateTask

Prototype

tsTaskID_t TS_CreateTask

(
tsTaskPriority_t taskPriority,/* IN: priority of new task. */

pfTsTaskEventHandler_t pfTaskEventHandler/* IN: event handler */
)

Description

Add a task to the task scheduler. Returns a task 1D that can be passed to TS_SendEvent() to uniquely
identify the task. If the task table is full, returns gTsInvalidTaskID_c. The taskPriority of 0 is reserved for
the idle task, and must never be specified for any other task.

Freescale Platform Reference Manual, Rev. 1.0

2-2 Freescale Semiconductor

Task Scheduler

If TS_CreateTask() is called with a taskPriority that is the same as the priority of another task, which one
is called first by the scheduler is not specified.

The task can be removed from the scheduler with TS_DestroyTask().

2.3.3 TS DestroyTask

Prototype

void TS_DestroyTask

(
tsTasklD_t tasked/* IN: Which task to destroy. */

);

Description

Use to remove a task from the scheduler that was added with TS_CreateTask().

2.3.4 TS _PendingEvents

Prototype
bool_t TS_PendingEvents(void);

Description

Returns TRUE if any task in the scheduler has pending events. Used for low power management.

2.3.5 TS _SendEvent

Prototype

void TS_SendEvent

(
tsTaskID_t taskID,/* IN: Which task to send the event to. */

event_t events/* IN: Event flag(s) to send. */
E

Description

Sends an event to another task. This function is atomic and can be called from within an interrupt handler.
Multiple event bits may be set at the same time. Event bits will have unique meaning per task.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 2-3

Task Scheduler

Freescale Platform Reference Manual, Rev. 1.0

2-4 Freescale Semiconductor

Chapter 3
Timer

Timers can be used for many purposes, including:
» Waiting for time outs
* Regular communications or sensor readings
» Blinking LEDs
* Any time based operation
Timers are non-real-time software based timers, with a range from 4 milliseconds (ms) to 262,140 ms

(about 4 minutes), on 4ms increments. For timing longer periods, build a timer callback that calls on these
standard timers.

A single hardware timer is used (TPML1 in the case of the HCS08). Due to the non-preemptive task
scheduler, the time event delivered is only approximate. A hardware timer should be used for more
real-time time needs.

3.1 Timer Overview

Timers must be allocated before they can be started or stopped. Use the TMR_AllocateTimer() function
for this purpose in the application initialization code. The timer functions (for code size reasons) do not
have error checking on the parameters, so make sure that the results of the TMR_AllocTimer() return is
not gTmrinvalidTimerID_c.

Each timer, when it expires, calls a callback function. The callback is made in the context of the timer task.
Applications may considering sending an event using TS_SendEvent() to the application task for further
processing, or act on the expired timer immediately in the callback. The callback is in the form of

void AppTimerCallBack (tmrTimerID_t timerld);

The callback may be any legal C name. The timerID may be ignored if this callback is not used for multiple
timers.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 3-1

Timer

3.2 Timer Properties

3.2.1 gTmrApplicationTimers_c

C Module Property gTmrApplicationTimers_c
BeeKit Property Name Number of available timers for the application
BeeKit Component Containing BeeKit Property PLM

The gTmrApplicationTimers_c property is set in BeeKit (Number of available timers for the application
from the PLM component property). This indicates how many timers the application will need. The default
is four. Ensure that this value is set high enough for all the timers that the application requires.

3.3 Timer API

3.3.1 TMR_AllocateTimer

Prototype
tmrTimerID_t TMR_AllocateTimer(void);

Description

Use to allocate a timer upon initialization of the application. TMR_FreeTimer() will free this timer if
required. Returns a unique timer ID that should be stored in a static or global variable of type
tmrTimerlD _t.

3.3.2 TMR_AreAllTimersOff

Prototype
bool_t TMR_AreAllTimersOff(void);

Description

Returns TRUE if all timers are off. Used by the low power library.

3.3.3 TMR_FreeTimer

Prototype

void TMR_FreeTimer(tmrTimerID_t timerliD);

Description

Free a timer allocated by TMR_AllocateTimer(). This function is not often used.

Freescale Platform Reference Manual, Rev. 1.0

3-2 Freescale Semiconductor

Timer

3.34 TMR_IsTimerActive

Prototype

bool_t TMR_IsTimerActive(tmrTimerlID_t timerliD);

Description

Returns TRUE if the specified timer is active (either an interval timer or single shot timer).

3.35 TMR_StartintervalTimer

Prototype

void TMR_StartintervalTimer

(
tmrTimerlD_t timerld,

tmrTimelnMilliseconds_t timelnMilliseconds,
void (*pfTmrCallBack) (tmrTimeriD_t)

);

Description

This function starts a repeating timer. The timer will call the callback at the specified time interval and will
not stop until TMR_StopTimer() is called.
NOTE

This prevents low-power from being entered while the timer is active. The
timer must have been allocated first.

3.3.6 TMR_StartSingleShotTimer

Prototype

void TMR_StartSingleShotTimer

(
tmrTimeriD_t timerld,

tmrTimelnMilliseconds_t timelnMilliseconds,
void (*pfTmrCallBack)(tmrTimerlD_t)

);

Description

This function starts a timer that fires exactly once. The callback will be called after the specified time
interval. There is no need to call TMR_StopTimer() after the callback.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 3-3

Timer
3.3.7 TMR_StopTimer

Prototype
void TMR_StopTimer(tmrTimerlID_t timerlID);

Description

Stops a running timer, either interval or single shot. Useful when a single shot timer is being used for a
time-out period to stop the single shot timer if the expected event occurred before the time-out.

Freescale Platform Reference Manual, Rev. 1.0

3-4 Freescale Semiconductor

Chapter 4
LED

The LED component allows logical control of LEDs without the application understanding the physical
interface to the LEDs.

4.1 LED Overview

By default, there are up to 8 LEDs controllable by the LED interface. If more LEDs are controlled, then
the code in LED.c must be modified.

LEDs may be OR’ed together to perform an operation on more than one LED. For example, to turn on
LEDs 1 and 3 and turn off all the rest, the following code sequence could be used:
LED_TurnOffAllLeds();

LED_TurnOnLed(LED1 | LED3);

The LED.h contains definitions for each LED, and it is easy to update for any particular hardware design.
Each LED definition has the following 4 macros. Replace these with the appropriate equivalents for the
hardware design.

#define Led1On() (mLED_PORT1_c &= ~mLED1_PIN_c)
#define LedlOfF() (mLED_PORT1_c |= mLED1_PIN_c)
#define LedlToggle() (mLED_PORT1_c ~= mLED1_PIN_c)
#define GetLedl() (~(mLED_PORT1_c & mLED1_PIN_c))

4.2 LED Properties

4.2.1 gLEDSupported_d

C Module Property gLEDSupported _d
BeeKit Property Name LED module enabled
BeeKit Component Containing BeeKit Property PLM

LED support can be completely enabled or disabled by setting the gLEDSupported_d to TRUE or FALSE.
The gLEDSupported_d property is set in BeeKit (LED module enabled from the PLM component
property). If LED support is disabled, all of the interface functions and macros (e.g. LED_SetLed())
become empty macros, and the code is silently compiled out of an application.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 4-1

LED

4.2.2 gLEDBIlipEnabled_d

C Module Property gLEDBIipEnabled_d
BeeKit Property Name LED blip enabled

BeeKit Component Containing BeeKit Property PLM

Use the gLEDBIipEnabled_d property to enable the blip once code. The gLEDBIipEnabled_d property is
set in BeeKit (LED blip enabled from the PLM component property). By default, flashing is turned on
permanently on an LED until it is turned off, or set to solid on. The gLEDBIlipEnabled_d property is
disabled by default.

4.3 LED API

4.3.1 LED TurnOffLed

Prototype
void LED_TurnOffLed(LED_t LEDNr);

Description

Turns off one or more LEDs. This is equivalent to LED_SetLed(LEDNTr, gLedOff_c);

4.3.2 LED_TurnOnLed

Prototype
void LED_TurnOffLed(LED_t LEDNr);

Description

Turn on one or more LEDs. This is equivalent to LED_SetLed(LEDNr, gLedOn_c);

4.3.3 LED_ToggleLed

Prototype
void LED ToggleLed(LED_t LEDNr);

Description

Toggle one or more LEDs. This is equivalent to LED_SetLed(LEDNTr, gLedToggle c);

Freescale Platform Reference Manual, Rev. 1.0

4-2 Freescale Semiconductor

LED

4.3.4 LED_StartFlash

Prototype
void LED_StartFlash(LED_t LEDNr);

Description

Flash one or more LEDs. This is equivalent to LED_SetLed (LEDNr, gLedFlashing_c). When this
function is called, the mLEDTimerID interval timer is started. Every time the interval timer expires, the
LEDs toggle. To stop the flashing, call LED_StopFlash(LEDNr), LED_SetLed(LEDNT,
gLedStopFlashing_c) or LED_StopFlashingAllLeds().

4.3.5 LED_StopFlash

Prototype
void LED_StopFlash(LED_t LEDNr);

Description

Stop flashing of one or more LEDs. When this function exits, the LED is turned off. If all LEDs are
stopped, the interval timer (MLEDTimerID) is also stopped.

4.3.6 LED_StartSerialFlash

Prototype
void LED_StartSerialFlash(void);

Description

Serial flashing is the condition where the LEDs turn on in serial fashion, one after the other. All previous
states of the LEDs are forgotten. When this function is called, the mLEDTimerID interval timer is started.
To turn off serial flashing, use LED_SetLed (turn one or more LEDs on or off). When serial flashing is
exited, all LEDs are set to off.

4.3.7 LED_ TurnOffAllLeds

Prototype
void LED_TurnOffAllLeds(void);

Description
Turn off all LEDs.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 4-3

LED
4.3.8 LED_TurnOnAllLeds

Prototype
void LED_TurnOnAllLeds(void);

Description
Turn on all LEDs.

4.3.9 LED_StopFlashingAllLeds

Prototype
void LED_StopFlashingAllLeds(void);

Description

Turn off all LEDs and stop the mLEDTimerID interval timer.

4.3.10 LED SetLed

Prototype
void LED SetlLed(LED_t LEDNr,LedState_t state);

Description

Set one or more LEDs to a particular state. The states include
» glLedFlashing_ ¢ — flash at a fixed rate
» gLedBlip_c — (optional) just like flashing, but blinks only once
* gLedOn_c — on solid
* gLedOff_c — off solid
» glLedToggle ¢ — toggle to on or off

4.3.11 LED_SetHex

Prototype

void LED_SetHex(uint8_t hexValue);

Description

Display a hex nibble (0x0 — Oxf) on a 4 LED display. The number is expressed in binary with LED1
representing the highest bit and LED4 representing the lowest bit. Turns off any flashing or serial lights.

Freescale Platform Reference Manual, Rev. 1.0

4-4 Freescale Semiconductor

Chapter 5
Display

The display interface allows easy access to text oriented LCDs.

5.1 Display Overview

The Freescale NCB, Axiom, and QE128 EVB boards support an LCD display. The display has two lines
with 16 characters per line. For all the display functions, if the length of the string is longer than the length
of the LCD display, the string is truncated.

Support for the LCD display can be found in the pisplay.h and Display.c files.

5.2 Display Properties

5.2.1 gLCDSupported _d

C Module Property gLCDSupported_d
BeeKit Property Name Display module enabled

BeeKit Component Containing BeeKit Property PLM

The gLCDSupported_d enables or disables LCD support. The gLCDSupported_d property is set in BeeKit
(Display module enabled from the PLM component property). If support is disabled, the LCD_ functions
all become empty macros, so the same C source code can compile for boards with or without an LCD
display.

5.3 Display API

5.3.1 LCD_ClearDisplay

Prototype
void LCD_ClearDisplay (void);

Description

Clears all lines on the display.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 5-1

Display
5.3.2 LCD_Init

Prototype
void LCD_Init(void);

Description

Initializes the display. Called once by the application on startup.

5.3.3 LCD_WriteBytes

Prototype

void LCD_WriteBytes

(
uint8_t *pstr,/* IN: pointer to the label to print with the bytes */

uint8_t *value, /* IN: The bytes to print. */
uint8_t line, /7* IN: The line in the LCD */
uint8_t length/* IN: number of bytes to print in the LCD */

):
Description

Write a label followed by a set of bytes to the LCD display. The number of bytes to display are listed by
the length parameter. The line parameter must be 1 or 2.

5.34 LCD_WriteString

Prototype

void LCD_WriteString
(

uint8_t line,/* IN: Line in display */
uint8_t *pStr/* IN: Pointer to text string */
)

Description

Displays a string on one LCD line. The line must be 1 or 2.

Freescale Platform Reference Manual, Rev. 1.0

5-2 Freescale Semiconductor

Display

5.3.5 LCD_WriteStringValue

Prototype

void LCD_WriteStringVvValue

(
uint8_t *pstr, /* IN: Pointer to text string */

uintl6_t value, /7* IN: Value */

uint8_t line, /* IN: Line in display. */

LCD_t numberFormat/* IN: Value to show in HEX or DEC */
)

Description

Writes a value to the display, in either hex or decimal. The label is printed first, then the number. The
format must be one of

* gLCD_HexFormat_c
* gLCD_DecFormat_c

The line must be 1 or 2.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor

5-3

Display

Freescale Platform Reference Manual, Rev. 1.0

5-4 Freescale Semiconductor

Chapter 6
Keyboard

The keyboard interface allows each access to key (or switch) input.

6.1 Keyboard Overview

Keyboard input is given to the application in the form of a callback function, which defaults to
BeeAppHandleKeys(). When a key is pressed, the application will receive a keyboard event in the
callback. The event will be one of the following:

* gKBD_EventSW1 c
* gKBD_EventSW2_c
* gKBD_EventSW3 c
 gKBD_EventSW4_c
 gKBD_EventLongSW1_c
 gKBD_EventLongSW?2_c
 gKBD_EventLongSW3 c
 gKBD_EventLongSW4 ¢
Do not confuse keyboard events with task event bits. Keyboard events are not a bit mask, but a value, and

arrive one at a time. Task events are a 16-bit bit mask and may contain multiple events on each call to the
task handler.

The keyboard handler gains control only if the application initialized the keyboard driver, which registers
the callback. Typical initialization code follows

KBD_ Init(BeeAppHandleKeys);

Keyboard support is found in the Keyboard.c and keyboard.h files.

6.2 Keyboard Properties

6.2.1 gKeyBoardSupported _d

C Module Property gKeyBoardSupported_d
BeeKit Property Name Keyboard module enabled

BeeKit Component Containing BeeKit Property PLM

The property gKkeyBoardSupported_d enables or disables keyboard support. The gKeyBoardSupported _d
property is set in BeeKit (Keyboard module enabled from the PLM component property). If disabled, the

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 6-1

Keyboard

keyboard functions continue to exist in the form of empty macros so the same code can be used for boards
that either support or do not support a keyboard.

6.2.2 gKeyScanlinterval _c

C Module Property gKeyScaninterval_c
BeeKit Property Name Key Scan Interval

BeeKit Component Containing BeeKit Property PLM

The gKeyScanlinterval_c property sets the time the key must be continuously pressed to register the
keypress. This scan interval must be long enough to be past the debounce period typically switches require.
The default is 50 milliseconds. The gKeyScaninterval_c property is set in BeeKit (Key Scan Interval from
the PLM component property).

6.2.3 gLongKeylterations_c

C Module Property gLongKeylterations_c
BeeKit Property Name Key Press Duration

BeeKit Component Containing BeeKit Property PLM

The gLongKeylterations_c property sets the number of iterations of the scan interval that means a long
key was pressed. This allows a single switch to be used for 2 keys, short and long. The default is 20
iterations, or 1 second of time (20 * 50ms). The gLongKeylterations_c property is set in BeeKit (Long key
press duration from the PLM component property).

6.3 Keyboard API

6.3.1 KBD_Init

Prototype

void KBD_Init

(
KBDFunction_t pfCallBackAdr /* IN: Pointer to callback function */

);

Description

The only interaction with the keyboard is through the callback, given to the KBD_Init() function. The
callback must have the following prototype (although the name can be anything the appropriate for the
application):

void BeeAppHandleKeys

(
key_event_t keyEvent /*IN: Events from keyboard module */

E
The callback is in the keyboard task context. Usually the keyboard action is carried out in the callback.

Freescale Platform Reference Manual, Rev. 1.0

6-2 Freescale Semiconductor

Chapter 7
UART

The UART driver allows easy access to the serial port found on the Freescale ZigBee development boards.

7.1 UART Overview

On some boards, such as the EVB, NCB, and QE128 EVB, two serial ports are supported. One is a 9-pin
traditional serial port (UART1) and the other is a USB serial port (UART2). The Axiom board supports
two traditional 9-pin serial ports. Both UARTs may be used simultaneously only if Uartl or Uart2_
routines are called. For example, Uartl_Transmit(). The SARD board supports a single 9-pin serial port
(UART1). The SRB board supports a single USB serial port (UART2).

The ZigBee Test Client (ZTC), a debugging tool, may be used in some applications. The ZTC defaults to
UART1 on the SARD and Axiom boards and to UART?2 on the EVB, NCB, SRB, and QE128 EVB boards.

The UART must be initialized before it is used. The typical code sequence to initialize the UART is as
follows:

UartX_SetRxCal IBack(AppUartRxCal 1Back) ;
UartX_SetBaud(gUartDefaultBaud_c);

The baud rate must be set to one of the following values:
» gUARTBaudRate1200 c
 gUARTBaudRate2400 c
 gUARTBaudRate4800 c
* gUARTBaudRate9600 c
* gUARTBaudRate19200 ¢
* gUARTBaudRate38400 c
The UartX_SetBaud() function is not necessary if using the default of 38,400 baud, as that is the default

baud rate. The rest of the serial settings are always 8 data bits, no stop bit, 1 parity bit (8N1), as defined in
uart.c.

The UartX_ functions go to the default UART, as defined by gUart_PortDefault_d. To use an explicit
UART, use Uartl_ or Uart2_ routines, for example, Uartl_SetRxCallBack().

When the callback is received, call the function UartX_GetByteFromRxBuffer() to retrieve bytes from the
UART driver.

To send data, use UartX_Transmit(). The UartX_Transmit() function includes an optional callback to
indicate when the data has been sent.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 7-1

UART

7.2 UART Properties

7.2.1 gUartl Enabled d

C Module Property gUartl Enabled d
BeeKit Property Name Enable the UART on SCI port 1

BeeKit Component Containing BeeKit Property PLM

The gUartl_Enabled_d property enables or disables UARTL. If this is disabled (FALSE), the Uartl_
functions are stubbed. The gUartl_Enabled_d property is set in BeeKit (Enable the UART on SCI port 1
from the PLM component property).

7.2.2 gUart2_Enabled d

C Module Property gUart2_Enabled _d
BeeKit Property Name Enable the UART on SCI port 2

BeeKit Component Containing BeeKit Property PLM

The gUart2_Enabled_d property enables or disables UART?2. If this is disabled (FALSE), the Uart2_
functions are stubbed. The gUart2_Enabled_d property is set in BeeKit (Enable the UART on SCI port 2
from the PLM component property).

7.2.3 gUart_PortDefault_d

The gUart_PortDefault_d property sets a default port, so the UartX_ macros refer to the proper functions.

7.2.4 gUart_TransmitBuffers_c

C Module Property gUart_TransmitBuffers_c
BeeKit Property Name UART Transmit Buffers

BeeKit Component Containing BeeKit Property PLM

Set gUart_TransmitBuffers_c to the number of simultaneous transmits expected in the application. This
defaults to 3. The gUart_TransmitBuffers_c property is set in BeeKit (UART Transmit Buffers from the
PLM component property).

Freescale Platform Reference Manual, Rev. 1.0

7-2 Freescale Semiconductor

UART

7.2.5 gUart_ReceiveBufferSize c

C Module Property gUart_ReceiveBufferSize_c
BeeKit Property Name UART Receive Buffer Size

BeeKit Component Containing BeeKit Property PLM

Set gUart_ReceiveBufferSize_c to the size of the largest expected packet plus 10% extra. This defaults to
32 bytes. The gUart_ReceiveBufferSize_c property is set in BeeKit (UART Receive Buffer Size fromthe |
PLM component property).

7.2.6 gUart_RxFlowControlSkew_d

C Module Property gUart_RxFlowControlSkew_d
BeeKit Property Name UART Rx Flow Control Skew

BeeKit Component Containing BeeKit Property PLM

The UART driver uses flow control to prevent a host PC or processor from sending data too quickly.
gUart_RxFlowControlSkew _d defaults to 8. The gUart_ RxFlowControlSkew_d property is set in BeeKit
(UART Rx Flow Control Skew from the PLM component property). |

7.2.7 gUart_RxFlowControlResume_d

C Module Property gUart_RxFlowControlResume_d
BeeKit Property Name UART Rx Flow Control Resume
BeeKit Component Containing BeeKit Property PLM

The UART driver will resume (remove hardware flow control) after the receive buffer empties. Set
gUart_RxFlowControlResume_d to the number of bytes in the receive buffer before receiving resumes.
The gUart_RxFlowControlResume_d property is set in BeeKit (UART Rx Flow Control Resume from the |
PLM component property).

7.3 UART API

7.3.1 Uart_ClearErrors

Prototype

void Uart_ClearErrors(void);

Description

Uart_ClearErrors() clears any errors on the serial line.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 7-3

UART

7.3.2 UartX_SetBaud

Prototype

void UartX_SetBaud(UartBaudRate_t baudRate);
void Uartl_SetBaud(UartBaudRate_t baudRate);
void Uart2_SetBaud(UartBaudRate_t baudRate);

Description
Sets the baud rate for the respective UART (default, UART1 or UART2). This can be called at any time.

For the rest of the functions, the prototype will be for UartX_ functions only, but they all apply to both
Uartl and Uart2_ functions as well.

7.3.3 UartX_Transmit

Prototype

bool _t UartX_Transmit
(

unsigned char const *pBuf,
index_t buflLen,
void (*pfCallBack)(unsigned char const *pBuf)

);

Description

Transmit data output on the UART. The data is transmitted in place in the buffer, so the contents of pBuf
must exist until the callback is issued. If the buffer was allocated as a message buffer, it can be freed when
the callback is issued. The callback is made in the context of the UART task.

Returns FALSE if the UART transmit queue is full. Returns TRUE if the transmit buffer has been accepted
and is now scheduled to be sent out the UART.

Transmitting data out the UART is interrupt driven, so this function always returns immediately.

7.3.4 UartX_IsTxActive

Prototype
bool_t UartX_IsTxActive(void);

Description
Returns TRUE if the UART is still actively transmitting data.

Freescale Platform Reference Manual, Rev. 1.0

7-4 Freescale Semiconductor

UART

7.3.5 UartX_SetRxCallBack

Prototype
void UartX_SetRxCallBack(void (*pfCallBack)(void));

Description

This function sets up the application for receiving data on from the UART. If this function has not been set
up and data is received on the UART, the data is discarded. Once the callback has been called, use
UartX_GetByteFromRxBuffer() to retrieve the data.

7.3.6 UartX_GetByteFromRxBuffer

Prototype
bool_t UartX_GetByteFromRxBuffer(unsigned char *pDst);

Description

Retrieves one byte from the UART buffer.

7.3.7 UartX_UngetByte

Prototype
void UartX_UngetByte(unsigned char byte);

Description

This function will put a byte back on the UART’s receive buffer. Similar to the ANSI C library function
ungetch(). This can be useful when decoding a serial protocol.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 7-5

UART

Freescale Platform Reference Manual, Rev. 1.0

7-6

Freescale Semiconductor

Chapter 8
Non-Volatile Memory

Non-\Volatile Memory (NVM) provides a permanent storage mechanism that can survive system resets and
power outages.

8.1 Non-Volatile Memory Overview

The NVM system uses some of the HCS08 flash memory for storage. Three 512 byte pages are reserved
for storage, 2 of which are in use at any given time with one spare for writing new data.

NVM must be managed carefully. The data sheet for the HCSO8 lists:
* Up to 100,000 program/erase cycles at typical voltage and temperature

Given a 20 year lifespan for a product, the flash memory should not be written to more than once every
1.8 hours on average. To manage this, the NVM component provides three interfaces to list NVM data as
“dirty”, that is changed or needing to be written.

* NvSaveOnldle()
* NvSaveOnlInterval()
* NvSaveOnCount()

Use the NvSaveOnldle() to save immediately (when the idle task next gains control). Use
NvSaveOninterval() to save after a period of time as defined by gNvMinimumTicksBetweenSaves_c. Use
NvSaveOnCount() to save after a certain number of calls to NvSaveOnCount(). Whichever of the three
method saves first will reset the others.

In BeeStack, NvSaveOnldle() is used just after the node joins the network and has retrieved the network
security key. This way, if the node is reset it will still be on the network. NvSaveOninterval() is used when
new routes or neighbors are discovered. NvSaveOnCount() is used in a secure network upon every
message sent or received to update the security counters and store them only once every 256 messages.
This prevents a node from saving too often and cause the flash to fail.

It is up to the application designer to decide which of these three methods (or combination thereof) is
appropriate for application data.

Data items to be stored in NVM are grouped together to fit in a flash page. This group is termed a data set,
and is a collection of pointers and sizes of items or structures to store into NVM. There are currently two
data sets defined in BeeStack:

» gNvDataSet_ Nwk_ID_c - the network data set
* gNvDataSet_App_ID_c - the application data set

These data sets are defined in nv_Data. c. The application data set may be modified to save application data.
For BeeStack, the network data set should not be modified.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 8-1

Non-Volatile Memory

WARNING

The compiler cannot tell if the data set has exceeded the maximum length
of 504 bytes. It is up to the application to ensure the data set fits in the flash

page.

All the functions listed in the API section below may be called by the application at any time (except within
an interrupt handler). Use NvSaveOnldle() to save immediately to flash.

WARNING

Do NOT call any NV storage functions except those listed in the API section
below. Calling on the NvSaveDataSet() function directly can cause the
system to hang.

8.2 Non-Volatile Memory Properties

8.2.1 gNvStoragelncluded_d

C Module Property gNvStoragelncluded_d
BeeKit Property Name NVM Storage Enabled

BeeKit Component Containing BeeKit Property PLM

Set gNvStoragelncluded_d to FALSE to disable NVM storage. All the NvXxx() functions become stubs
if disabled. The gNvStoragelncluded_d property can be set in BeeKit (NVM storage enabled from the
PLM component property).

8.2.2 gNvNumberOfDataSets_c

Set gNvNumberOfDataSets_c to define the number of data sets. Changing the number of data sets is a
fairly tricky operation. In addition to changing this define, the data sets in Nv_bata.c must also be changed,
and the linker file, BeeStack.prm Or BeeStack_QE128_far_banked.prm (PLM folder) must also be changed
to reflect the new size of the flash storage area. Comments in the Nv_bata.c file and the linker file are
included to aid in changing the number of data sets. The default number of data sets is two (2).

8.2.3 gNvMinimumTicksBetweenSaves_c

This determines how many ticks must occur between when the data set is first marked dirty before it is
saved. Each tick is 1 second. The total time may span up to 4 minutes (4 * 60 = 240 ticks).

8.2.4 gNvCountsBetweenSaves_c

The property gNvCountsBetweenSaves_c determines the number of counts between saving if calling only
the NvSaveOnCount() function.

Freescale Platform Reference Manual, Rev. 1.0

8-2 Freescale Semiconductor

Non-Volatile Memory

8.3 Non-Volatile Memory API

8.3.1 NvSaveOnldle

Prototype
void NvSaveOnldle(NvDataSetlD_t dataSetlID);

Description

Mark the data set as dirty and save it at the next possible moment. This will happen when the idle task is
next called. The system must be idle for NVM to save data. The radio is disabled during the period the
flash is getting updated.

8.3.2 NvSaveOnlinterval

Prototype

void NvSaveOnlnterval (NvDataSetlD_t dataSetlID);

Description

Mark the data set as dirty to be saved after the next interval as specified by the compile-time
gNvMinimumTicksBetweenSaves_c. This defaults to 4 seconds.

8.3.3 NvSaveOnCount

Prototype
void NvSaveOnCount(NvDataSetlD_t dataSetlD);

Description

Mark the data set as dirty and save when the count reaches the value specified by the property
gNvCountsBetweenSaves_c.

8.34 NvisDataSetDirty

Prototype

bool_t NvisDataSetDirty(NvDataSetlID_t dataSetlD);

Description

Returns TRUE if the data set is dirty and needs to be saved.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 8-3

Non-Volatile Memory

8.3.5 NvRestoreDataSet

Prototype
bool_t NvRestoreDataSet(NvDataSetlID_t dataSetlD);

Description

Restores a data set from NVM. This is used by ZDO when using a ZDO function to restore the state of the
network from NVM. This can also be used by the application to restore the data any time that is
appropriate.

If the data set is dirty at the time of the restore, the changed data will be discarded and the data that was
last stored in NVM will be placed into the RAM structures as defined by the data set.

8.3.6 NvClearCriticalSection

Prototype

void NvClearCriticalSection(void);

Description

Use to clear a NVM critical section as set by NvSetCriticalSection().

8.3.7 NvSetCriticalSection

Prototype

void NvSetCriticalSection(void);

Description

Use this to indicate to the NVM engine not to save while in a critical section. This is a counting semaphore,
so for each NvSetCriticalSection(), exactly one NvClearCriticalSection() should be called.

Critical sections can be used to make sure changes to the data set are atomic across fields in the data set,
or if the application or stack cannot be interrupted by an NVM save (which may take several milliseconds).

Freescale Platform Reference Manual, Rev. 1.0

8-4 Freescale Semiconductor

Chapter 9
Low Power Library

The low power library, sometimes called the low power module (LPM) simplifies the process of putting
an HCS08 node into low power or sleep modes to conserve battery life. Only ZigBee End-Devices (ZEDs)
can sleep. ZigBee Coordinators and Routers must remain awake to route packets on behalf of other nodes.

9.1 Low Power Library Overview

The files PWR.c, PWRLib.h, PWRLib.c, PWR_Configuration.h and PWR_Interface.h comprise the low-power
library. All configuration is done at compile-time through properties located in PWR_Configuration.h.

The low power library is initialized automatically by BeeStack and by the 802.15.4 MAC Codebase. If the
gLpmincluded_d property is selected, low power is enabled whenever the node is idle (no timers or events
pending). The application can also elect to stay awake by using the PWR_DisallowDeviceToSleep()
function.

NOTE
With the exception of PWR_DisallowDeviceToSleep() and
PWR_AllowDeviceToSleep(), do not call the low power functions directly
in the application. The idle task already contains the proper code for
entering deep or light sleep as appropriate, in a way that coordinates with
the entire system.

9.2 Low Power Library Properties

The following list is not an exhaustive list of properties, but includes the most important ones. For the
entire list, see PWR_Configuration.h.

9.2.1 gRxOnWhenldle_d/gLpmincluded_d

Set gRxOnWhenldle_d to TRUE in BeeStack to disable low power mode. Set gLpmIincluded_d to FALSE
in 802.15.4 MAC Codebase to disable low power mode. All the low-power code will be compiled out if
gRxOnWhenldle is TRUE or if gLpmIncluded_d is FALSE. Low power can be disabled at run-time using
PWR_DisallowDeviceToSleep() from the application, however this will not save code space.

Set gRxOnWhenldle_d to FALSE or gLpmincluded_d to TRUE to enable low lower in BeeStack ZigBee
End-Devices (ZEDs) or in 802.15.4 MAC Codebase. The rest of the low-power properties only have
meaning if low power is enabled.

gRxOnWhenldle_d/gLpmincluded_d can be found in Applicationconf.h, and is a configurable property
in BeeKit.

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 9-1

Low Power Library

9.2.2

cPWR_DeepSleepMode

Set cPWR_DeepSleepMode to the appropriate deep sleeping mode for the application. The possible sleep
modes are:

Mode 1 - Ext. KBI int wakeup. Wake on keyboard interrupt only.

Mode 2 - RTI timer wakeup +-30%. Note that the RT1 clock can be calibrated to be accurate within
1% at a given temperature, but the calibration procedure is outside the scope of this manual.

Mode 3 - Ext. KBI int and RTI timer wakeup +-30%, radio in OFF/reset mode. This mode can
wake from either a keyboard interrupt or the timer, whichever comes first. The time should be
sufficiently short for application timing purposes, because if the MCU is woken by the keyboard
interrupt, it cannot tell how much time has passed, and so will assume the same amount of time as
specified by the cPWR_RTITickTime property. This will wake up slowly (approximately 1ms) .
This mode uses less power than mode 4 because the radio is off.

Mode 4 - Ext. KBI int and RTI timer wakeup +-30%, radio in hibernate - not reset. This mode can
wake faster than mode 3, but saves less power. It is useful for shorter sleep times.

Mode 5 - Radio in acoma/doze, supplying 62.5kHz clock to MCU, MCU in STOP3, RTI wakeup
from ext clock 512mS (max avail with ext 62.5khz). This mode is useful because it is the only
mode that allows the BDM to continue use after low is entered. All the other modes (1-4) cause the
BDM to be disabled.

The deep sleep mode defaults to Mode 4.

9.2.3

cPWR_SleepMode

Leave the cPWR_SleepMode as TRUE (1). This option saves considerable power when the system is
running. It works by entering an MCU halt when the system enters the idle task and will wake instantly
when an interrupt occurs (UART, keyboard, timer expires, etc...) This can save 30% of power at run-time.
The radio enters acoma/doze mode. The clock on the radio is still running but the receiver is disabled.

9.24

cPWR_RTITickTime

The cPWR_RTITickTime property determines how much time before waking the low power node. The
possible values are:

cSRTISC_Int0008ms
cSRTISC_Int0032ms
cSRTISC_Int0064ms
cSRTISC_Int0128ms
cSRTISC_Int0256ms
cSRTISC_Int0512ms
cSRTISC_Int1024ms

The cPWR_RTITickTime defaults to cSRTISC _Int1024ms.

Freescale Platform Reference Manual, Rev. 1.0

9-2

Freescale Semiconductor

Low Power Library

C Module Property cPWR_DeepSleepMode
BeeKit Property Name Deep Sleep Wake up

BeeKit Component Containing BeeKit Property PLM

C Module Property cPWR_SleepMode
BeeKit Property Name Deep Sleep Handling

BeeKit Component Containing BeeKit Property PLM

C Module Property cPWR_RTITickTime
BeeKit Property Name Distance Between RTI Interrupts

BeeKit Component Containing BeeKit Property PLM

9.3 Low Power Library API

9.3.1 PWR_ChecklIfDeviceCanGoToSleep

Prototype
bool_t PWR_ChecklfDeviceCanGoToSleep(void);

Description

Checks the flag and ensure it is allowed to go to low power at this time. Always ensure that this returns
TRUE before calling PWR_EnterLowPower().

9.3.2 PWR_EnterLowPower

Prototype

void PWR_EnterLowPower (void);

Description

Enters low power mode (either deep or light sleep, depending on whether any timers are active).

Freescale Platform Reference Manual, Rev. 1.0

Freescale Semiconductor 9-3

Low Power Library

9.3.3 PWR_DisallowDeviceToSleep

Prototype

void PWR_DisallowDeviceToSleep (void);

Description

Sets a critical section to prevent the system from entering low power. Use this if the device must stay
awake, for example, during ZigBee commissioning or during a sensor reading.

9.34 PWR_AllowDeviceToSleep

Prototype
void PWR_AllowDeviceToSleep (void);

Description

Clears the critical section set by PWR_DisallowDeviceToSleep(). This is a counting semaphore. There
should be one call to PWR_AllowDeviceToSleep() for every call to PWR_DisallowDeviceToSleep().

Freescale Platform Reference Manual, Rev. 1.0

9-4 Freescale Semiconductor

	About This Book
	Audience
	Organization
	Conventions
	Definitions, Acronyms, and Abbreviations
	References
	Revision History
	Chapter 1 Introduction
	Chapter 2 Task Scheduler
	2.1 Task Scheduler Overview
	2.2 Task Scheduler Properties
	2.2.1 gTsMaxTasks_c

	2.3 Task Scheduler API
	2.3.1 TS_ClearEvent
	2.3.2 TS_CreateTask
	2.3.3 TS_DestroyTask
	2.3.4 TS_PendingEvents
	2.3.5 TS_SendEvent

	Chapter 3 Timer
	3.1 Timer Overview
	3.2 Timer Properties
	3.2.1 gTmrApplicationTimers_c

	3.3 Timer API
	3.3.1 TMR_AllocateTimer
	3.3.2 TMR_AreAllTimersOff
	3.3.3 TMR_FreeTimer
	3.3.4 TMR_IsTimerActive
	3.3.5 TMR_StartIntervalTimer
	3.3.6 TMR_StartSingleShotTimer
	3.3.7 TMR_StopTimer

	Chapter 4 LED
	4.1 LED Overview
	4.2 LED Properties
	4.2.1 gLEDSupported_d
	4.2.2 gLEDBlipEnabled_d

	4.3 LED API
	4.3.1 LED_TurnOffLed
	4.3.2 LED_TurnOnLed
	4.3.3 LED_ToggleLed
	4.3.4 LED_StartFlash
	4.3.5 LED_StopFlash
	4.3.6 LED_StartSerialFlash
	4.3.7 LED_TurnOffAllLeds
	4.3.8 LED_TurnOnAllLeds
	4.3.9 LED_StopFlashingAllLeds
	4.3.10 LED_SetLed
	4.3.11 LED_SetHex

	Chapter 5 Display
	5.1 Display Overview
	5.2 Display Properties
	5.2.1 gLCDSupported_d

	5.3 Display API
	5.3.1 LCD_ClearDisplay
	5.3.2 LCD_Init
	5.3.3 LCD_WriteBytes
	5.3.4 LCD_WriteString
	5.3.5 LCD_WriteStringValue

	Chapter 6 Keyboard
	6.1 Keyboard Overview
	6.2 Keyboard Properties
	6.2.1 gKeyBoardSupported_d
	6.2.2 gKeyScanInterval_c
	6.2.3 gLongKeyIterations_c

	6.3 Keyboard API
	6.3.1 KBD_Init

	Chapter 7 UART
	7.1 UART Overview
	7.2 UART Properties
	7.2.1 gUart1_Enabled_d
	7.2.2 gUart2_Enabled_d
	7.2.3 gUart_PortDefault_d
	7.2.4 gUart_TransmitBuffers_c
	7.2.5 gUart_ReceiveBufferSize_c
	7.2.6 gUart_RxFlowControlSkew_d
	7.2.7 gUart_RxFlowControlResume_d

	7.3 UART API
	7.3.1 Uart_ClearErrors
	7.3.2 UartX_SetBaud
	7.3.3 UartX_Transmit
	7.3.4 UartX_IsTxActive
	7.3.5 UartX_SetRxCallBack
	7.3.6 UartX_GetByteFromRxBuffer
	7.3.7 UartX_UngetByte

	Chapter 8 Non-Volatile Memory
	8.1 Non-Volatile Memory Overview
	8.2 Non-Volatile Memory Properties
	8.2.1 gNvStorageIncluded_d
	8.2.2 gNvNumberOfDataSets_c
	8.2.3 gNvMinimumTicksBetweenSaves_c
	8.2.4 gNvCountsBetweenSaves_c

	8.3 Non-Volatile Memory API
	8.3.1 NvSaveOnIdle
	8.3.2 NvSaveOnInterval
	8.3.3 NvSaveOnCount
	8.3.4 NvIsDataSetDirty
	8.3.5 NvRestoreDataSet
	8.3.6 NvClearCriticalSection
	8.3.7 NvSetCriticalSection

	Chapter 9 Low Power Library
	9.1 Low Power Library Overview
	9.2 Low Power Library Properties
	9.2.1 gRxOnWhenIdle_d/gLpmIncluded_d
	9.2.2 cPWR_DeepSleepMode
	9.2.3 cPWR_SleepMode
	9.2.4 cPWR_RTITickTime

	9.3 Low Power Library API
	9.3.1 PWR_CheckIfDeviceCanGoToSleep
	9.3.2 PWR_EnterLowPower
	9.3.3 PWR_DisallowDeviceToSleep
	9.3.4 PWR_AllowDeviceToSleep

