

Open Access

Application Note
Using the ARM7TDMI Debug Comms Channel

Document number: ARM DAI 0038B

Issued: January 1998

Copyright Advanced RISC Machines Ltd (ARM) 1998

ENGLAND
Advanced RISC Machines Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@arm.com

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@arm.com

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@arm.com

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

World Wide Web address: http://www.arm.com

38

Application Note 38
ii ARM DAI 0038B

Open Access

Proprietary Notice
ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in
any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use
contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied
warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from
the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Key
Document Number

This document has a number which identifies it uniquely. The number is displayed on the front page and at the foot of each subsequent page.

ARM XXX 0000 X - 00

Document Status

The document’s status is displayed in a banner at the bottom of each page. This describes the document’s confidentiality and its information
status.

Confidentiality status is one of:

ARM Confidential Distributable to ARM staff and NDA signatories only

Named Partner Confidential Distributable to the above and to the staff of named partner companies only

Partner Confidential Distributable within ARM and to staff of all partner companies

Open Access No restriction on distribution

Information status is one of:

Advance Information on a potential product

Preliminary Current information on a product under development

Final Complete information on a developed product

Change Log
Issue Date By Change

B January 1998 SKW Released

(On review drafts only) Two-digit draft number

Release code in the range A-Z

Unique four-digit number

Document type

Table of Contents

Application Note 38
ARM DAI 0038B 1

Open Access

Table of Contents

1 Introduction 2

2 Command Line Debugging Commands 3

3 ARM Debugger for Windows Channel Viewer 4

3.1 Activating a channel viewer 4
3.2 The user interface 5
3.3 Target to debugger (receiving data) 5
3.4 Debugger to target (sending data) 5

4 Target Transfer of Data 6

5 Polled Debug Communications 7

5.1 Target to debugger communication 7
5.2 Debugger to target communication 9

6 Interrupt-Driven Debug Communications 11

7 Access from Thumb State 12

Introduction

Application Note 38
2 ARM DAI 0038B

Open Access

1 Introduction

The EmbeddedICE macrocell in the ARM7TDMI contains a debug communication
channel. This allows data to be passed between the target and the host debugger using
the JTAG port and an EmbeddedICE interface, without stopping the program flow or
entering debug state. This Application Note examines how the debug communication
channel can be accessed by a program running on the target and by the host debugger.

With SDT 2.11, there are two methods of accessing the debug communication channel:

• The command line debugger (armsd or the command window in the ARM
Debugger for Windows)

• The Channel Viewer mechanism in the ARM Debugger for Windows.

Note If you wish to make use of the facilities described in this Application Note, ensure that you
are using SDT2.11 or later, EmbeddedICE agent software version 2.04 or later, and GAL
version EFI-0011C.

Important Note ccin and ccout are currently not supported for the SDT2.11 Windows tools ARMsd
version 4.48 [last build 9 Sept 1997] and ADW2.11 [last build 9 Sept 1997]. This will be
changed in a future release.

For further information on the debug facilities provided by EmbeddedICE on the
ARM7TDMI, see:

• Application Note 28: The ARM7TDMI Debug Architecture (ARM DAI 0028)

• Software Development Toolkit User Guide (ARM DUI 0040), Chapter 7
EmbeddedICE

Command Line Debugging Commands

Application Note 38
ARM DAI 0038B 3

Open Access

2 Command Line Debugging Commands

To access the debug communication channel from the command line, use the following
commands:

ccin <filename> Selects a file containing comms channel data for reading.
This command also enables host to target comms channel
communication.

ccout <filename> Selects a file where comms channel data is written. This
command also enables target to host comms channel
communication.

Note In SDT 2.11, ccin does not correctly enable the debug communication channel. As a
workaround, when using ccin, you must also use a ccout command, even if Target to
Host communication is not required by the application.

ARM Debugger for Windows Channel Viewer

Application Note 38
4 ARM DAI 0038B

Open Access

3 ARM Debugger for Windows Channel Viewer

3.1 Activating a channel viewer

To activate the debug communication channel viewer in ADW:

1 After starting ADW, select Options then Configure Debugger.

2 Select the Remote_A RDI DLL from the connections list.

3 Select the Configure button to change the RDI connection settings. At the bottom
of this dialog there is a section for channel viewers, as shown in Figure 1: Angel
Remote Configuration dialog.

Figure 1: Angel Remote Configuration dialog

4 To add a channel viewer DLL, click the Add button, select the appropriate DLL,
and click OK.

5 To remove a channel viewer DLL from the list, highlight the DLL that you wish to
remove and click the Remove button.

6 To enable a channel viewer DLL, ensure that the Enabled box is checked, and
that the appropriate DLL in the list is highlighted.

7 Click OK for both the Angel Remote Configuration dialog and the Debugger
Configuration dialog. ADW restarts with an active channel viewer.

ARM Debugger for Windows Channel Viewer

Application Note 38
ARM DAI 0038B 5

Open Access

3.2 The user interface

The debug communication channel viewer has the following menu structure:

Control Start Viewer starts viewing the channel
Pause Viewer stops viewing the channel
Exit quits the channel viewer

Options Clear Display clears the output display
Clear Send Buffer clears the send buffer
Save Contents saves the contents of the window to a file
Change Font changes the font in the window

The window has a dockable dialog bar at the bottom of the window, which is used to send
data from the host debugger to a program running on the target. The ADW Channel
Viewer is shown in Figure 2: ADW Channel Viewer.

Figure 2: ADW Channel Viewer

3.3 Target to debugger (receiving data)

The data that is received by the Channel Viewer as 32-bit words is converted into ASCII
character codes and displayed in the window as text, if the channel viewers are active.

However, if the word 0xffffffff is received, the following word is displayed as a
hexadecimal number, not as ASCII text.

3.4 Debugger to target (sending data)

Type text in the Edit box and click the Send button (or press Return) to store the text in a
buffer as 32-bit data. The data is sent a word at a time when the debugger detects that the
comms data write register is free. The Left to Send counter displays the number of bytes
that are left in the buffer, and the text is converted into 32-bit words. This data is sent
when requested by the target.

Target Transfer of Data

Application Note 38
6 ARM DAI 0038B

Open Access

4 Target Transfer of Data

The ARM7TDMI debug communication channel is accessed by the target as coprocessor
14 on the ARM7TDMI core using the ARM instructions MCR and MRC. Two registers are
provided to transfer data:

Comms data read register A 32-bit wide register used to receive data from
the debugger. The following ARM instruction
returns the read register value in Rd:

MRC p14, 0, Rd, c1, c0

Comms data write register A 32-bit wide register used to send data to the
debugger. The following instruction writes the
value in Rn to the write register:

MCR p14, 0, Rn, c1, c0

Polled Debug Communications

Application Note 38
ARM DAI 0038B 7

Open Access

5 Polled Debug Communications

In addition to the comms data read and write registers, a comms data control register is
provided by the debug communication channel.

The following instruction returns the control register value in Rd:

MRC p14, 0, Rd, c0, c0

Two bits in this control register provide synchronized handshaking between the target and
the host debugger:

Bit 1 (W bit) Denotes whether the comms data write register is free (from the
target’s point of view):

W = 0 New data may be written by the target application.

W = 1 The host debugger can scan new data out of the write
register.

Bit 0 (R bit) Denotes whether there is some new data in the comms data read
register (from the target’s point of view):

R = 1 New data is available to be read by the target application.

R = 0 The host debugger can scan new data into the read
register.

Note The debugger cannot use coprocessor 14 to access the debug communication channel
directly, as this has no meaning to the debugger. Instead, the debugger can read from and
write to the debug communication channel registers using the scan chain. The debug
communication channel data and control registers are mapped into addresses in the
EmbeddedICE macrocell.

5.1 Target to debugger communication

This is the sequence of events for an application running on the ARM7TDMI core to
communicate with the debugger running on the host:

1 The target application checks if the debug communication channel write register is
free for use. It does this using the MRC instruction to read the debug
communication channel control register to check that the W bit is clear.

2 If the W bit is clear, the debug communication write register is clear and the
application writes a word to it using the MCR instruction to coprocessor 14.

The action of writing to the register automatically sets the W bit. If the W bit is set, the
debug communication write register has not been emptied by the debugger. If the
application needs to send another word, it must poll the W bit until it is clear.

3 The debugger polls the debug communication control register via scan chain 2. If
the debugger sees that the W bit is set, it can read the debug communication
channel data register to read the message sent by the application. The process of
reading the data automatically clears the W bit in the debug communication control
register.

Polled Debug Communications

Application Note 38
8 ARM DAI 0038B

Open Access

The following piece of target application code shows this in action:

AREA OutChannel, CODE, READONLY
ENTRY
MOV r1,#4 ; Number of words to send
ADR r2, outdata ; Address of data to send

pollout
MRC p14,0,r0,c0,c0 ; Read control register
TST r0, #2
BNE pollout ; if W set, register

; still full
write

LDR r3,[r2],#4 ; Read word from outdata
; into r3 and update the
; pointer

MCR p14,0,r3,c1,c0 ; Write word from r3
SUBS r1,r1,#1 ; Update counter
BNE pollout ; Loop if more words to

; be written
MOV r0, #0x18 ; Angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel semihosting SWI

outdata
DCB "Hello there!"
END

4 Assemble and link this code using the following commands:

armasm -g outchan.s

armlink outchan.o -o outchan

5.1.1 Using the command line

1 Load the image into armsd using the following command:

armsd -li -adp -port s=1 outchan

2 Enable communication and open the output file, then execute the program:

ccout output

go

3 Quit armsd when execution finishes. You should be able to view the file and see
that transfer has occurred.

5.1.2 Using the ADW Channel Viewer

1 Load the image created above into the ARM Debugger for Windows, and activate the
Channel Viewer, as described in 3.1 Activating a channel viewer on page 4.

2 In the Channel Viewer window, select Control then Start Viewer from the menu,
to enable the debug communication channel.

3 Select Execute then Go from the menu to execute the program in ADW.

The data sent from the target (in this example, Hello there!) should now be
displayed in the Channel Viewer window.

Polled Debug Communications

Application Note 38
ARM DAI 0038B 9

Open Access

5.2 Debugger to target communication

This is the sequence of events for message transfer from the debugger running on the
host to the application running on the core:

1 The debugger polls the debug communication control register R bit. If the R bit is
clear, the debug communication read register is clear and data can be written
there for the target application to read.

2 The debugger scans the data into the debug communication read register via
scan chain 2. The R bit in the debug communication control register is
automatically set by this.

3 The target application polls the R bit in the debug communication control register.
If it is set, there is data in the debug communication read register that can be read
by the application, using the MRC instruction to read from coprocessor 14. The R
bit is cleared as part of the read instruction.

The following piece of target application code shows this in action:

AREA InChannel, CODE, READONLY
ENTRY
MOV r1,#4 ; Number of words to read
LDR r2, =indata ; Address to store data

; read
pollin

MRC p14,0,r0,c0,c0 ; Read control register
TST r0, #1
BEQ pollin ; If R bit clear then

; loop
read

MRC p14,0,r3,c1,c0 ; read word into r3
STR r3,[r2],#4 ; Store to memory and

; update pointer
SUBS r1,r1,#1 ; Update counter
BNE pollin ; Loop if more words to

; read
MOV r0, #0x18 ; Angel_SWIreason_ReportException
LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
SWI 0x123456 ; Angel ARM semihosting

; SWI

AREA Storage, DATA, READWRITE
indata

DCB "Duffmessage#"
END

4 Create an input file on the host containing, for example, And goodbye!.

5 Assemble and link this code using the following commands:

armasm -g inchan.s

armlink inchan.o -o inchan

Polled Debug Communications

Application Note 38
10 ARM DAI 0038B

Open Access

5.2.1 Using the command line

1 Load the image into armsd using the following command:

armsd -li -adp -port s=1 inchan

If you view the area of memory indata, you see its initial random contents:

examine indata

2 Enable communication and open the input file, then execute the program:

ccin input

ccout output

go

3 When execution completes, view memory again and you can see the input has
been read in:

examine indata

Note A ccout command is required, even though this is Host to Target communication, in
order to open up the debug communication channel correctly.

5.2.2 Using the ADW Channel Viewer

1 Load the image created above into the ARM Debugger for Windows, and activate the
Channel Viewer (as described in 3.1 Activating a channel viewer on page 4).

2 In the Channel Viewer window, select Control then Start Viewer from the menu
to enable the debug communication channel.

3 In the Edit box on the dialog bar of the Channel Viewer, type And goodbye, and
click the Send button. The Left to Send counter should show the number of bytes
stored for sending to the target.

If you view the area of memory indata, you see its initial contents:

examine indata

4 Execute the program in ADW by selecting Execute then Go from the menu.

5 When execution is complete, view memory again and you can see that the input
has been read in:

examine indata

Interrupt-Driven Debug Communications

Application Note 38
ARM DAI 0038B 11

Open Access

6 Interrupt-Driven Debug Communications

The examples given above are polled. It is also possible to convert these to interrupt-
driven examples by connecting up COMMRX and COMMTX signals from the ARM7TDMI
core to your interrupt controller.

The read and write code given above could then be moved into an interrupt handler.

For information on writing interrupt handlers refer to the Software Development Toolkit
User Guide (ARM DUI 0040), Chapter 11 Exception Handling.

Access from Thumb State

Application Note 38
12 ARM DAI 0038B

Open Access

7 Access from Thumb State

As the Thumb instruction set does not contain coprocessor instructions, you cannot use
the debug communication channel while the core is in Thumb state.

There are three possible ways around this:

• You can write each polling routine as a SWI (Software Interrupt), which can then
be executed while in either ARM or Thumb state. Entering the SWI handler
immediately puts the core into ARM state where the coprocessor instructions are
available. Refer to the Software Development Toolkit User Guide (ARM DUI
0040), Chapter 11 Exception Handling for further information on SWIs.

• Thumb code can make interworking calls to ARM subroutines which implement
the polling. Refer to the Software Development Toolkit User Guide (ARM DUI
0040), Chapter 12 Interworking ARM and Thumb for further information on
mixing ARM and Thumb code.

• Use interrupt-driven communication rather than polled communication. The
interrupt handler would be written in ARM instructions, so the coprocessor
instructions can be accessed directly.

