

Document Number: BSSRMZB2007
Rev. 1.1
12/2008

Freescale BeeStack™
Software Reference Manual for ZigBee 2007

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2007, 2008. All rights reserved.

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor i

Contents
About This Book. vii
Audience . vii
Organization . vii
Revision History . viii
Conventions . viii
Definitions, Acronyms, and Abbreviations . viii
Reference Materials . x

Chapter 1
Introduction

1.1 What This Document Describes . 1-1
1.2 What This Document Does Not Describe. 1-1

Chapter 2
ZigBee Overview

2.1 Network Elements. 2-2
2.1.1 Device Types . 2-2
2.1.2 Star Network . 2-4
2.1.3 Tree Network . 2-5
2.1.4 Mesh Network. 2-6
2.2 ZigBee Feature Sets, Stack Profiles and Application Profiles . 2-6
2.2.1 Stack Profile 0x01 (ZigBee Feature Set) . 2-7
2.2.2 Stack Profile 0x02 (ZigBee Pro Feature Set) . 2-8
2.2.3 Other ZigBee Configurations . 2-9
2.2.4 Application Profiles . 2-9
2.3 Routing . 2-9
2.3.1 Tree Routing . 2-9
2.3.2 Mesh Routing . 2-10
2.3.3 Many-to-one and Source Routing. 2-10
2.4 Groupcast and Multicast . 2-12
2.5 Personal Area Network . 2-13
2.6 Channels . 2-13
2.7 Device and Service Discovery . 2-13
2.8 Addressing/Messaging . 2-13
2.9 Binding . 2-15
2.10 Application Elements . 2-15
2.10.1 Applications . 2-15
2.10.2 Attributes . 2-16
2.10.3 Clusters . 2-16
2.10.4 Endpoints . 2-17

Chapter 3

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

ii Freescale Semiconductor

BeeStack Features

3.1 BeeStack Task Scheduler . 3-1
3.2 BeeStack Application Programming Interface . 3-2
3.3 Source Files – Directory Structure . 3-4
3.4 Miscellaneous Source Files . 3-5

Chapter 4
Application Framework

4.1 AF Types. 4-2
4.2 Endpoint Management . 4-3
4.2.1 Simple Descriptor . 4-3
4.2.2 Register Endpoint . 4-3
4.2.3 De-register Endpoint . 4-4
4.2.4 Get Endpoint . 4-4
4.2.5 Find Endpoint Descriptor . 4-4
4.3 Message Allocation and Deallocation . 4-5
4.3.1 AF_MsgAlloc . 4-5
4.3.2 AF_MsgAllocFragment . 4-5
4.3.3 AF_FreeDataIndicationMsg . 4-6
4.3.4 AF_FreeDataRequestFragments . 4-6
4.4 AF Data Requests . 4-6
4.5 AF Data Indications . 4-10

Chapter 5
Application Support Sub-layer

5.1 Direct and Indirect Data Addressing . 5-2
5.2 APS Layer Interface . 5-2
5.2.1 Get Request. 5-2
5.2.2 Set Request . 5-3
5.2.3 Get Table Entry. 5-4
5.2.4 Set Table Entry . 5-4
5.2.5 Add to Address Map . 5-4
5.2.6 Remove from Address Map . 5-4
5.2.7 Find IEEE Address in Address Map. 5-4
5.2.8 Get NWK Address from IEEE Address . 5-4
5.2.9 Get IEEE Address from NWK Address . 5-5
5.3 Binding . 5-5
5.3.1 Bind Request. 5-5
5.3.2 Unbind Request. 5-6
5.3.3 Find Binding Entry . 5-6
5.3.4 Find Next Binding Entry. 5-6
5.3.5 Clear Binding Table . 5-7
5.3.6 Add Group Request . 5-7

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor iii

5.3.7 Remove Group Request . 5-7
5.3.8 Remove Endpoint from All Groups Request . 5-8
5.3.9 Identify Endpoint Group Membership . 5-8
5.3.10 Group Reset Function . 5-8
5.4 AIB Attributes. 5-9

Chapter 6
ZigBee Device Objects

6.1 ZDO State Machine . 6-2
6.2 General ZDO Interfaces (Codebase Version 3.0.0 and Higher) . 6-4
6.2.1 Get State Machine. 6-4
6.2.2 Start ZDO State Machine . 6-5
6.2.3 Stop With Mode Select . 6-6
6.2.4 Stop ZDO State Machine . 6-6
6.2.5 Stop ZDO and Leave . 6-6
6.3 General ZDO Interfaces (CodeBase Versions Before 3.0.0) . 6-7
6.3.1 Get State Machine. 6-7
6.3.2 Start ZDO State Machine without NVM . 6-7
6.3.3 Start ZDO State Machine with NVM . 6-8
6.3.4 Stop ZDO State Machine . 6-8
6.3.5 Stop ZDO and Leave . 6-8
6.4 Device Specific ZDO Interfaces . 6-9
6.4.1 ZC State Machine . 6-9
6.4.2 ZR State Machine . 6-10
6.4.3 ZED Machine State. 6-12
6.5 Selecting PAN ID, Channel and Parent . 6-14

Chapter 7
ZigBee Device Profile

7.1 Application Support Layer . 7-1
7.2 Device and Service Discovery . 7-2
7.2.1 Device Discovery . 7-2
7.2.2 Service Discovery . 7-2
7.3 Primary Discovery Cache Device Operation . 7-3
7.4 Binding Services . 7-4
7.5 ZDP Functions and Macros . 7-4
7.5.1 ZDP Register Callback . 7-4
7.5.2 ZDP NLME Synchronization Request . 7-4
7.6 Device and Service Discovery – Client Services . 7-5
7.6.1 Network Address Request . 7-6
7.6.2 IEEE Address Request Command . 7-6
7.6.3 Node Descriptor Request . 7-6
7.6.4 Power Descriptor Request . 7-7
7.6.5 Simple Descriptor Request . 7-7

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

iv Freescale Semiconductor

7.6.6 Active Endpoint Request . 7-7
7.6.7 Match Descriptor Request . 7-8
7.6.8 Complex Descriptor Request . 7-8
7.6.9 User Descriptor Request . 7-8
7.6.10 Discovery Cache Request . 7-9
7.6.11 End Device Announce . 7-9
7.6.12 User Descriptor Set Request . 7-10
7.6.13 Server Discovery Request. 7-10
7.6.14 Discovery Cache Storage Request . 7-10
7.6.15 Store Node Descriptor on Primary Cache Device . 7-11
7.6.16 Store Power Descriptor Request . 7-11
7.6.17 Active Endpoint List Storage Request . 7-12
7.6.18 Simple Descriptor Storage Request . 7-12
7.6.19 Remove Node Cache Request. 7-13
7.6.20 Find Node Cache Request. 7-13
7.7 Binding Management Service Commands . 7-13
7.7.1 End Device Bind Request . 7-14
7.7.2 Bind Request. 7-15
7.7.3 Unbind Request. 7-15
7.7.4 Local Bind Register Request . 7-16
7.7.5 Replace Device Request . 7-16
7.7.6 Store Backup Bind Entry Request . 7-17
7.7.7 Remove Entry from Backup Storage . 7-17
7.7.8 Backup Binding Table Request . 7-18
7.7.9 Recover Binding Table Request . 7-18
7.7.10 Source Binding Table Backup Request . 7-19
7.7.11 Recover Source Binding Table Request . 7-19
7.8 Network Management Services . 7-20
7.8.1 Management Network Discovery Request . 7-20
7.8.2 Management LQI Request . 7-20
7.8.3 Routing Discovery Management Request . 7-21
7.8.4 Management Bind Request . 7-21
7.8.5 Management Leave Request . 7-21
7.8.6 Management Permit Joining . 7-22
7.8.7 Management Network Update Request . 7-22
7.8.8 Management Network Update Notify. 7-22
7.8.9 Management Cache. 7-23
7.9 ZDO Layer Status Values . 7-23

Chapter 8
Network Layer

8.1 Channel and PAN Configuration . 8-2
8.1.1 Channel Configuration . 8-2
8.1.2 PAN ID . 8-3

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor v

8.1.3 Beacon Notify . 8-3
8.1.4 NWK Layer Interfaces . 8-4
8.1.5 NWK Layer Filters . 8-5
8.2 NWK Information Base . 8-5

Chapter 9
Application Support Layer

9.1 ASL Utility Functions. 9-1
9.2 ASL Data Types . 9-1
9.3 ASL Utility Functions. 9-3
9.3.1 Initialize User Interface . 9-3
9.3.2 Set Serial LEDs. 9-3
9.3.3 Stop Serial LEDs . 9-3
9.3.4 Set LED State . 9-3
9.3.5 Write to LCD . 9-3
9.3.6 Change User Interface Mode . 9-4
9.3.7 Display Current User Interface Mode. 9-4
9.3.8 Update Device. 9-4
9.3.9 Handle Keys . 9-4
9.3.10 Display Temperature. 9-4

Chapter 10
BeeStack Common Functions

10.1 BeeStack Common Prototypes . 10-1
10.2 Common Network Functions . 10-2

Chapter 11
User-Configurable BeeStack Options

11.1 Compile-Time Options . 11-1
11.2 More Compile-time Options . 11-6

Chapter 12
BeeStack Security

12.1 Security Overview . 12-1
12.1.1 Security Modes . 12-2
12.2 Security Implementation. 12-3
12.3 Security Configuration Properties . 12-3
12.3.1 mDefaultValueOfNwkKeyPreconfigured_c. 12-3
12.3.2 mDefaultValueOfNwkSecurityLevel_c . 12-3
12.3.3 mDefaultValueOfNetworkKey_c . 12-3
12.3.4 gDefaultValueOfMaxEntriesForExclusionTable_c . 12-3
12.3.5 mDefaultValueOfNwkKeyType_c . 12-4

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

vi Freescale Semiconductor

12.3.6 mDefaultValueOfTrustCenterKeyType_c . 12-4
12.3.7 mDefaultValueOfTrustCenterKeyType_c . 12-4
12.3.8 mDefaultValueOfTrustCenterKey_c . 12-4
12.3.9 mDefaultValueOfApplicationKeyType_c . 12-4
12.3.10 gSKKESupported_d . 12-4
12.3.11 gApsLinkKeySecurity_d . 12-4
12.4 ZigBee Trust Center Authentication. 12-5
12.5 IEEE address join filter. 12-5

Chapter 13
Permission Configuration Table

13.1 Permission Configuration Table API . 13-1
13.1.1 AddDeviceToPermissionsTable . 13-1
13.1.2 RemoveDeviceFromPermissionsTable. 13-1
13.1.3 RemoveAllFromPermissionsTable . 13-2
13.1.4 GetPermissionsTable . 13-2
13.1.5 SetPermissionsTable . 13-2

Chapter 14
Frequency Agility

14.1 Frequency Agility Overview . 14-1
14.1.1 Enabling the State Machine . 14-1
14.1.2 Monitoring Indications . 14-2
14.1.3 Energy Scan Process . 14-2
14.1.4 Application Control . 14-2
14.1.5 Transmission of a mgmt_update Notify . 14-2
14.1.6 Channel Change . 14-2
14.1.7 Channel Statistics . 14-3
14.2 Enabling Frequency Agility . 14-3
14.3 Frequency Agility ZDP Primitives . 14-3
14.3.1 MGMT_NWK_Update_req . 14-3
14.3.2 MGMT_NWK_Update_Notify . 14-4
14.4 Frequency Agility State Machine Primitives . 14-4
14.4.1 ASL_EnergyScanRequest. 14-4
14.4.2 ASL_ChangeChannel . 14-4
14.4.3 FA_Process_Mgmt_NWK_Update_request. 14-4
14.4.4 FA_Process_Mgmt_NWK_Update_notify. 14-5
14.4.5 FA_ChannelMasterStateMachine . 14-5
14.4.6 FA_ProcessEnergyScanCnf . 14-5
14.4.7 FA_ProcessNlmeTxReport . 14-5

Chapter 15

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor vii

Interpan Communication

15.1 Interpan Communication Overview . 15-1
15.2 AF InterPan Data Request . 15-1
15.3 AF InterPan Data Indications . 15-2

Appendix A
Porting from BeeStack 2006 to BeeStack 2007
A.1 Upgrading the Solution File . A-1
A.2 Enabling New Features . A-1
A.3 Applying Changes In The Application . A-2
A.3.1 Modifying The Application NVM Data Set . A-2
A.3.2 Replacing MSG_Free() with AF_FreeDataIndicationMsg() . A-2
A.3.3 Inserting Code for Handling Frequency Agility . A-3
A.3.4 New ZDO Features . A-4

Appendix B
Table and Buffer Sizes
B.1 Message Buffer Configuration System. A-1
B.1.1 gHandleTrackingTableSize_c. A-1
B.1.2 gPacketsOnHoldTableSize_c . A-1
B.1.3 gHttMaxIndirectEntries_c . A-2
B.1.4 gApsMaxDataHandlingCapacity_c . A-2
B.1.5 gDefaulEntriesInSKKEStateMachine_c. A-2
B.1.6 gDefaultEntriesInEAStateMachine_c. A-2
B.2 Address Map . A-2
B.3 Binding Table . A-3
B.4 Neighbor Table . A-3
B.5 Link Key Table . A-3
B.6 Routing and Route Discovery Tables . A-4

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

viii Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor vii

About This Book
This manual describes BeeStack, the Freescale implementation of the ZigBee wireless network protocol
stack for the ZigBee 2007 specification. This manual explains the standard interfaces and device
definitions that permit interoperability among ZigBee devices.

Audience
This document is intended for software developers who write applications for BeeStack-based products
using Freescale development tools. It describes BeeStack APIs, control features, code examples, and
functional variables.

Organization
This document is organized into the following sections.
Chapter 1 Introduction – describes this document.
Chapter 2 ZigBee Overview – introduces ZigBee network concepts.
Chapter 3 BeeStack Overview – introduces the BeeStack architecture and source file

structure.
Chapter 4 Application Framework – introduces the function calls, macros, and APIs

available in the Application Framework (AF).
Chapter 5 Application Support Sub-layer – describes the function calls, macros, and APIs

available in the Application Support Sub-layer (APS).
Chapter 6 ZigBee Device Objects – introduces the function calls, macros, and APIs available

in the ZigBee device objects (ZDO).
Chapter 7 ZigBee Device Profile – introduces the ZigBee device profile (ZDP) and

associated macros, function calls, and prototypes.
Chapter 8 Network Layer – describes the function calls and macros available in the network

(NWK) layer.
Chapter 9 Application Support Layer – introduces the Application support functions and

macros.
Chapter 10 BeeStack Common Functions – introduces the BeeStack common interface

macros and function calls.
Chapter 11 User-Configurable BeeStack Options – introduces the BeeStack configurable

items.
Chapter 12 BeeStack Security – describes how BeeStack supports full ZigBee security for

stack profile 0x01 and stack profile 0x02 of the ZigBee 2007 specification.
Chapter 13 Permission Configuration Table - describes the optional BeeStack Permission

Configuration Table feature.
Chapter 14 Frequency Agility – describes how BeeStack supports an example

implementation of a frequency agility channel master which demonstrates how
frequency agility could be implemented.

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

viii Freescale Semiconductor

Chapter 14 Interpan Communication – details how BeeStack supports the Inter pan
communication method that is specified by the Smart Energy/AMI application
profile specification. The Interpan communication feature allows for
communication outside the ZigBee network to very simple devices.

Appendix A Porting ZigBee 2006 to ZigBee 2007 – describes how to port from ZigBee 2006
to ZigBee 2007.

Revision History
The following table summarizes revisions to this document since the previous release (Rev. 1.0).

Conventions
This BeeStack Reference Manual uses the following formatting conventions when detailing commands,
parameters, and sample code:

Courier mono-space type indicates commands, command parameters, and code examples.
Bold style indicates the command line elements, which must be entered exactly as written.
Italic type indicates command parameters that the user must type in or replace, as well as
emphasizes concepts or foreign phrases and words.

Definitions, Acronyms, and Abbreviations
Acronym or Term Definition
ACK Acknowledgement
ACL Access control list
AF Application framework
AIB Application support sub-layer information base
APDU Application support sub-layer protocol data unit
API Application programming interface
APL Application layer
APS Application support sub-layer
APSDE APS data entity
APSDE-SAP APS data entity - service access point
APSME APS management entity
APSME-SAP APS management entity - service access point
ASDU APS service data unit
OTA Over the air: a radio frequency transmission

Revision History

Location Revision

Entire document Updated for MC1322x silicon revision and numerous software updates.

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor ix

Binding Matching ZigBee devices based on services and needs
BTR Broadcast transaction record, the local receipt of a broadcast message
BTT Broadcast transaction table, holds all BTRs
CBC-MAC Cipher block chaining message authentication code
CCA Clear channel assessment
Cluster A collection of attributes associated with a specific cluster-identifier
Cluster identifier An enumeration that uniquely identifies a cluster within an application profile
CSMA-CA Carrier sense multiple access with collision avoidance
CTR Counter
Data Transaction Process of data transmission from the endpoint of a sending device to the endpoint

of the receiving device
Device/Node ZigBee network component containing a single IEEE 802.15.4 radio
Direct addressing Direct data transmission including both destination and source endpoint fields
Endpoint Component within a unit; a single IEEE 802.15.4 radio may support up to 240

independent endpoints
IB Information base, the collection of variables configuring certain behaviors in a

layer
IEEE Institute of Electrical and Electronics Engineers, a standards body
Indirect addressing Transmission including only the source endpoint addressing field along with the

indirect addressing bit
ISO International Standards Organization
LCD Liquid crystal display
LED Light-emitting diode
LQI Link quality indicator or indication
MAC Medium access control sub-layer
MCPS-SAP MAC common part sub-layer - service access point
MIC Message integrity code
MLME MAC sub-layer management entity
MLME-SAP MAC sub-layer management entity service access point
NIB Network layer information base
NLDE Network layer data entity
NLDE-SAP Network layer data entity - service access point
NLME Network layer management entity
NLME-SAP Network layer management entity - service access point
NPDU Network protocol data unit
NSDU Network service data unit

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

x Freescale Semiconductor

NVM Non-volatile memory
NWK Network layer
Octet Eight bits of data, or one byte
OSI Open System Interconnect
PAN Personal area network
PD-SAP Physical layer data - service access point
PDU Protocol data unit (packet)
PHY Physical layer
PIB Personal area network information base
PLME-SAP Physical layer management entity - service access point
Profile Set of options in a stack or an application
RF Radio frequency
SAP Service access point
SKG Secret key generation
SKKE Symmetric-key key establishment protocol
SSP Security service provider, a ZigBee stack component
Stack ZigBee protocol stack
WDA wireless demo application
WPAN wireless personal area network
ZigBee Feature Set Stack Profile 0x01
ZigBee Pro Feature Set)Stack Profile 0x02
ZDO ZigBee device object(s)
ZDP ZigBee device profile
ZED ZigBee End Device
ZC ZigBee Coordinator
ZR ZigBee Router
Zx Freescale Specific Combo Device
802.15.4 An IEEE standard radio specification that underlies the ZigBee Specification

Reference Materials
This following served as references for this manual:

1. Document 053474r17, ZigBee Specification, ZigBee Alliance, October 2007
2. Document 075123r02, AFG-ZigBee_ClusterLibrary_Specification, ZigBee Alliance, May 2008
3. Document 053520r25, ZB_HA_PTG-Home-Automation-Profile, ZigBee Alliance, October 2007

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 1-1

Chapter 1
Introduction
This manual describes the Freescale BeeStack protocol stack, its components, and their functional roles in
building wireless networks. The function calls, application programming interfaces (API), and code
examples included in this manual address every component required for communication in a ZigBee
wireless network.

BeeStack supports the following ZigBee 2007 specification profiles:
• For the HCS08 Platform

— Stack profile 0x01(ZigBee Feature Set)
• For the MC1322x Platform

— Stack Profile 0x01 (ZigBee Feature Set)
— Stack Profile 0x02 (ZigBee Pro Feature Set)

See Appendix A, “Porting from BeeStack 2006 to BeeStack 2007” for information on how to port from
ZigBee 2006 to ZigBee 2007.

1.1 What This Document Describes
This manual provides ZigBee software designers and developers all of the function prototypes, macros,
and stack libraries required to develop applications for ZigBee wireless networks.

1.2 What This Document Does Not Describe
This manual does not describe how to install software, configure the hardware, or set up and use ZigBee
applications.

See the following documents for help in setting up the Freescale hardware and using other Freescale
software to configure devices.

• Freescale ZigBee Applications User’s Guide for ZigBee 2007, (ZAUGZB2007)
• Freescale BeeKit Wireless Connectivity Toolkit User’s Guide, (BKWCTKUG)

Introduction

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

1-2 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-1

Chapter 2
ZigBee Overview
The BeeStack architecture builds on the ZigBee protocol stack. Based on the OSI Seven-Layer model, the
ZigBee stack ensures interoperability among networked devices. The physical (PHY), media access
control (MAC), and network (NWK) layers create the foundation for the application (APL) layers.

BeeStack defines additional services to improve the communication between layers of the protocol stack.
At the Application Layer, the application support layer (ASL) facilitates information exchange between
the Application Support Sub-Layer (APS) and application objects. Finally, ZigBee Device Objects (ZDO),
in addition to other manufacturer-designed applications, allow for a wide range of useful tasks applicable
to home and industrial automation.

BeeStack uses an IEEE® 802.15.4-compliant MAC/PHY layer that is not part of ZigBee itself. The PHY
layer encompasses features specified by IEEE 802.15.4 for packet-based, wireless transport. The MAC
sub-layer supports features specific to low-power radio frequency networks.

The NWK layer defines routing, network creation and configuration, and device synchronization. The
application framework (AF) supports a rich array of services that define ZigBee functionality. ZigBee
Device Objects (ZDO) implement application-level services in all nodes via profiles. A security service
provider (SSP) is available to the layers that use encryption (NWK and APS).

The complete Freescale BeeStack protocol stack includes the following components:
• ZigBee Device Objects (ZDO) and ZigBee Device Profile (ZDP)
• Application Support Sub-Layer (APS)
• Application Framework (AF)
• Network (NWK) Layer
• Security Service Provider (SSP)
• IEEE 802.15.4-compliant MAC and Physical (PHY) Layers

The combined PHY, MAC, NWK, and application layer elements shown in Figure 2-1 comprise the full
BeeStack implementation.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-2 Freescale Semiconductor

Figure 2-1. ZigBee Layers

2.1 Network Elements
A ZigBee network requires wireless devices programmed to communicate in any of several network
configurations. Each network requires a device acting as a ZigBee coordinator and at least one other device
with which to communicate.

2.1.1 Device Types
A ZigBee network is formed when a device declares itself a ZigBee coordinator (ZC) and permits other
nodes to join its network. ZigBee routers (ZRs) and ZigBee end devices (ZEDs) can join the network either
by joining the ZC directly or by joining ZRs that have already joined. ZRs permit nodes on the network to
communicate with each other even if they are not within radio range because ZRs and the ZC can pass
messages between nodes. ZEDs cannot pass messages between nodes; they can only send their own
messages and receive messages meant for them. The ZC also serves as the trust center when the network
employs security.

2.1.1.1 ZigBee Coordinator
The ZigBee coordinator roles include:

• Starting a network
• Selecting a Personal Area Network Identifier (PAN ID) for the network
• Allowing devices to join or leave the network
• Performing all the functions of a ZigBee router
• Containing the trust center in a secure network

A p p l i c a t i o n
O b j e c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r
M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t i o n
O b j e c t

1

A p p l i c a t i o n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t

(Z D O)

ZD
O

M
anagem

entP
lane

P h y s i c a l (P H Y) L a y e r
A

pp
lic

at
io

n
La

ye
r

N
LM

E-SAP

M L M E - S A PM L D E - S A P

P D - S A P P L M E - S A P

AP
SM

E-S
AP

A P S D E - S A P
E n d P o i n t 0E n d p o i n t 1

A P S D E - S A P
E n d p o i n t 2 4 0
A P S D E - S A P

N L D E - S A P N L M E - S A P

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-3

2.1.1.2 ZigBee Router
The ZigBee router serves to:

• Route data between ZigBee devices
• Allow devices to join or leave the network
• Manage messages for its children that are end devices
• Optionally perform all the functions of a ZigBee end device

2.1.1.3 ZigBee End Device
The ZigBee end device is a reduced-function device that can:

• Sleep to save power, so it could be battery powered
• Require fewer memory resources because it does not store network-wide information or need to be

able to perform network-related services

ZEDs perform functions such as switching a light on or off or monitoring an occupancy sensor. If the ZED
primarily reports a sensor’s state, it may sleep between measurements. For a ZED reporting the state of a
switch, it can sleep until the switch is pressed, which might not occur for years. For the simplest end
devices, a common design goal is to have the node run on primary batteries for the length of the batteries’
shelf life.

2.1.1.4 Combo Device
BeeStack offers multiple library configurations for each device type, including a Combo device (Zx) type.
The Combo device type is not a ZigBee defined type, but a Freescale specific stack configuration that
allows the application to perform a runtime selection of the ZigBee device types (ZC, ZR, ZED). This
allows for creating advanced devices that, for example, can first attempt to join a network as a Router, but
if none are found, can restart itself as a Coordinator and form a network. Using the Combo device increases
BeeStack’s code size footprint compared to selecting a specific device type because the Combo device
contains the functionality of all the device types.

2.1.1.5 Nodes
The collection of independent device descriptions and applications residing in a single unit, and sharing a
common 802.15.4 radio, defines a node in a ZigBee network. Theoretically, a ZigBee network can handle
more than 65,000 nodes.

Three network types common to ZigBee include the star, tree, and mesh configurations. Each network
must have one coordinator, and it will have at least one other device.

ZigBee networks employ a parent and child structure. A network forms when a device declares itself a ZC
and permits other nodes to join. The nodes joining that ZC become its children, and the ZC their parent.
Network parents have specific responsibilities. In some network types, ZEDs communicate only with their
parents, and that parent routes the ZED’s messages to another destination when required.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-4 Freescale Semiconductor

2.1.2 Star Network
A conventional star network consists of a coordinator with one or more ZEDs associated directly with the
ZC. In the star network shown in Figure 2-2, all other devices directly communicate with the ZigBee
Coordinator, and the coordinator passes all messages between end devices.

Figure 2-2. Standard Star Network Configuration

Z ig b e e E n d D e v ic e

Z ig b e e C o o r d in a to r

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-5

2.1.3 Tree Network
As shown in Figure 2-3, a tree network consists of a ZC with one or more routers and, optionally, one or
more ZEDs associated in a hierarchical structure. A tree network extends the star network with the use of
ZigBee routers (ZR).

All messages in a tree network move up or down the parent-child hierarchy. Each transfer from one node
to the next is a hop. The depth of a tree network is the maximum number of hops a message must make to
get from a source to a destination.

Every router can examine a message it has received to tell if the recipient is below it in the tree. If the
recipient is not one below it, the router will pass the message to its own parent.

Figure 2-3. Typical Tree Network

Z i g b e e D e v i c e

Z ig b e e E n d D e v i c e

Z ig b e e R o u t e r

Z ig b e e C o o r d in a t o r

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-6 Freescale Semiconductor

2.1.4 Mesh Network
In a mesh network, each device can communicate directly with other devices in the network. A mesh
network consists of a ZC that has one or more ZRs and optionally one or more associated ZEDs.

Figure 2-3 shows a simple ZigBee mesh network. Any device in a mesh network may send a message
addressed to any other device in the network. If the two devices are within radio range of each other, the
message moves in one hop, and no other devices are involved. If they are beyond each other’s radio range,
the message must travel from router to router, following a path that the network establishes based on its
routing efficiency.

Figure 2-4. Mesh Network Configuration

2.2 ZigBee Feature Sets, Stack Profiles and Application Profiles
Both the 802.15.4 MAC/PHY and ZigBee specification specify many features and functionality in one
common specification, but they do not specifically dictate what is actually implemented. This is defined
in a stack profile also called a “Feature Set”. On top of the ZigBee specification resides the Application
profiles which specify the applications and may restrict or make features normally optional in the stack
mandatory. It is important that ZigBee developers become familiar with all of these specifications to better
understand what features and functionality are required to create a product that can be certified. Figure 2-5
shows how the ZigBee specifications interrelate.

Figure 2-5. Specification Interrelation

84

22

48

54

12

Z igbee E nd D ev ice

Z igbee R ou te r

Z igbee C oord ina tor

1
5 4

77

15

94

ZigBee 2007 Specification

Stack profile (1,2)

Application profile
(HA,SE, etc. profile)

ZigBee cluster Library

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-7

The stack profile defines the stack settings, knob and features. All devices in a network must conform to
the same stack profile to ensure a working and interoperable network. The ZigBee Alliance has defined
two feature sets:

• Stack Profile 0x01 (ZigBee Feature Set)
• Stack Profile 0x02 (ZigBee Pro Feature Set)

The following sections describe the differences between these two feature sets.

2.2.1 Stack Profile 0x01 (ZigBee Feature Set)
• Supports Ad-hoc self forming networks
• Mesh, Tree and Star Networks
• Non-Beaconed only
• Supports 802.15.4 Device Types
• FFD Device (Coordinator and Router)
• Reduced Function Device (End Device)
• Application Support
• Device and Service Discovery
• Messaging with optional responses
• Public and private profiles
• Profiles are predefined Stack and Application attributes
• Security
• Symmetric Key with AES-128
• Authentication and Encryption at NWK and Application levels
• Network Keys and Link Keys (network keys are mandatory)
• Qualification
• Platform and Network Compliance Certification
• Interoperability Events
• Fragmentation (Optional) – allows data that is bigger than a single ZigBee package to be

fragmented, sent in multiple packets and re-assembled
— Pros – Provides a standard way to handle larger data transfers

• Frequency Agility (Mandatory) – provides a method for the network to change channels in the
event of interference
— Pros - Provides an ability to detect potential interference on a channel and direct devices on the

network to change to a better channel
• PAN ID Conflict Resolution (Mandatory) – provides the ability for separate PANs (networks) to

resolve a conflict in the PAN ID without have to restart the entire network
— Pros – Provides a way for a network to handle other co-located networks without having to

restart a network to assign a new PAN ID.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-8 Freescale Semiconductor

• InterPan Communication (Non ZigBee feature) – provides the ability for communicating to low
cost 802.15.4 devices. This feature was originally defined by the Smart Energy profile but can be
used for Inter Pan communication outside of the ZigBee network

2.2.2 Stack Profile 0x02 (ZigBee Pro Feature Set)
The ZigBee Pro feature set uses the ZigBee feature set as a baseline. The ZigBee Pro feature set contains
the following features either removed or added from the ZigBee feature set as follows:

Removed
• Tree Routing

— Pros - Backup routing mechanism to avoid large routing table's being filled
— Cons - Does not work when the parent-child link is broken

• CSKIP address assignment
— Pros - Assigns a unique address based on the device's parent. It is decentralized and

automatically avoids conflicts
— Cons - Addresses are predefined taking up memory in parent device and are network location

specific (based on where the device is in the tree), creating issues if the device moves or has to
associate with another parent.

Added
• Centralized Data Collection and Network Scalability is provided by adding many-to-one routing

and Source routing to the specification
— Pros - Supports central concentrator data transmission pattern (many devices communicating

with a single device) and occupies just a single table route entry to reach the concentrator. This
enables the concentrator to send responses back to individual devices without table routing
entries for each device

— Cons - If there are many concentrators, then a table entry is needed in each device for every
concentrator and the header portion of a message is increased which reduces the payload

• Automated Device Address Management is provided by adding stochastic address
assignment/address conflict resolution
— Pros - Eliminates the need for the parent to store address tables to assign to devices
— Cons - Must employ a broadcast message to ensure there are not duplicate addresses on the

network and provide a distributed protocol to detect and notify devices of address conflicts
• Group Addressing is provided by adding multicast to the specification and puts limits on the

normal broadcast message to reduce the network traffic created. This is an alternative to APS group
addressing which is part of the ZigBee feature set
— Pros - Enables a single message to reach a group of devices without sending the message to all

devices in the network
— Cons - The group must be co-located close to each other to see the benefit over a normal

broadcast message and devices do not acknowledge that the command was received

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-9

• High Security Modes - Enables a higher level of security than the ZigBee and ZigBee Pro standard
security that is typically required for financial transactions
— Pros - Addresses broadcast replay attacks, ensures that all routers authenticate their router

neighbors and enables network key to be encrypted using public key, etc.
— Cons - Can not support devices that use standard security and will require much more

complexity and memory
• Link Status/Symmetric routes

— Pros - Provides the ability to use the same link for forward and backward routing which reduces
table entries and ensures that the devices can communicate both ways

— Cons - Regular communication between every router and each of its neighbors has to occur to
update link quality status

2.2.3 Other ZigBee Configurations
Freescale provides a wide range of possible stack configurations. These can be used for manufacturer
specific profiles (MSP) and/or proprietary networks. These configurable options allow users to select those
features required and gain the code size savings of removing unneeded features which are otherwise
mandatory. Through BeeKit, it is possible to select, enable or disable stack features to tailor the project
configuration for the desired functionality and free up resources for application use.

If an MSP/Proprietary network is created, the stack profile ID must be set to ZERO. This is done by setting
the gMSPstackProfileEnabled_d property to FALSE, and setting gAppStackProfile_c to the desired stack
profile ID value. Both are configurable using BeeKit.

2.2.4 Application Profiles
Application profiles specify a set of applications and can apply further restrictions or make optional
features mandatory. The application profiles cover areas such as Home Automation, Commercial Building
Automation, Smart Energy and Telecom applications. All application profiles utilize the ZigBee Cluster
Library Specification. The ZigBee Cluster Library Specification dictates all services and features used by
the application profiles. For example, an On/Off Input Service (such as a lamp or a power outlet) or a
Demand Response Load Control Service utilized by smart energy devices to control temperature or shut
off devices during critical power periods.

2.3 Routing
The ZigBee feature set supports tree and mesh routing. The ZigBee Pro feature set supports mesh, many
to one and source routing. The following sections briefly describe how each of these features operate.

2.3.1 Tree Routing
Tree routing is the fallback routing mechanism in the ZigBee Feature Set. If a mesh route can not be found,
a packet is routed using the tree routing mechanism. In tree routing, all messages move up or down the
parent-child hierarchy. Each transfer from one node to the next is a hop. The depth of a tree network is the
maximum number of hops a message must make to get from a source to a destination.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-10 Freescale Semiconductor

Every router can examine a message it has received to tell if the recipient is below it in the tree. If the
recipient is not one below it, the router passes the message to its own parent.

Tree routing depends on the CSKIP addressing scheme used by the ZigBee Feature Set to determine
whether to route the packet up or down in the network.

2.3.2 Mesh Routing
ZigBee utilizes the Ad Hoc On-Demand Vector routing protocol for mesh routing. To discover a mesh
route, the originator sends out a route request broadcast. When other nodes receive the route request, they
determine whether it know the destination and prepare either to forward the route request in the network
or prepare a route reply. When the route request is forwarded, the path cost of the received route request
increments with the cost of the received route request. When a reply is sent, the reply then contains the
total cost of the “path” to the destination. This allows the originator to determine what route has the lowest
cost if multiple route replies are received. Parent nodes will respond on behalf of ZEDs. The stack
maintains a route discovery table which insures that multiple replies are not sent for the same route request.
This table also limits how many route requests can be handled at the same time. The table is configurable
by adjusting gNwkRoutingMaxRouteDiscoveyTableEntry_c . Mesh routes are discovered automatically
when communicating with a node where the route is not known. It is also possible for the application to
force a route reply by setting a Tx Option bit (gApsTxOptionForceRouteDiscovery_c), or calling the
NLME-route-discovery request function. Each node also maintains a route table. This table stores resolved
routes.

A route age expiry feature is available in BeeStack Codebase 3.0.0 and later. The old route table entry is
used if the route table is full. It is possible to modify the behavior of the route expiration algorithm in the
ExpireAndGetEntryInRouteTable() function.

2.3.3 Many-to-one and Source Routing
Many-to-one and source routing solves the problem with large networks that require large mesh route
tables. In ZigBee networks, there are typically one or more “gateways” or concentrators where many nodes
send data. This normally spins off many route discoveries from all of these nodes to establish a
communication path to the concentrator and back. Many-to-one and source routing helps reduce the
amount of traffic required and reduces route table size.

ZigBee defines a gateway as a “concentrator”. The concentrator sends out a many-to-one route request to
establish in-bound mesh routes as shown in Figure 2-6. This only adds one route entry in the route tables
so nodes can communicate with the concentrator. This greatly reduces the over the air messages required
to establish routes from all the devices that want to communicate with the concentrator because normal
route discovery is no longer required.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-11

Figure 2-6. Man-to-One Routing

Source routing, as shown in Figure 2-7, allows the concentrator to reply to nodes in the network without
establishing new mesh routes. When a node wants to send a packet to a concentrator, it first sends out a
route record command. The route record command is relayed from the originating node to the concentrator
and it “records” the route. This allows the concentrator to reply back using this “source route”.

NOTE
This reply with a source route takes place if the data concentrator requests a
source route during the many-to-one route request. The source routes are
stored in the source route table of the concentrator if available.

A concentrator can be memory constrained, which means it does not have a source route table or it can be
a very small concentrator. A concentrator that has a large RAM, is able to contain the source routes of
numerous nodes. This allows the nodes to send a route record when requested, rather than every time it
tries to communicate with a concentrator.

Figure 2-7. Source Routing

To enable the concentrator feature, the gConcentratorFlag_d property must be set to TRUE.

The application can initiate a many to one route discovery by using the
ASL_SendRouteDiscoveryManyToOne()function, or configure the stack to send it out with a fixed
interval by setting the gConcentratorDiscoveryTime_c property. the radius of the Many to one route
request is set by the gConcentratorRadius_c property

The source route table size can be adjust by setting the gNwkInfobaseMaxSourceRouteTableEntry_c
property. If the Concentrator should be a non-memory constrained (high ram) Concentrator the property
gNwkHighRamConcentrator_d must be set to false.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-12 Freescale Semiconductor

All functions for handling the source route table are available in full source code so they can be modified
for access for example, external memory (ResetSourceRouteTable(), GetFreeEntryInSourceRouteTable(),
NwkRetrieveSourceRoute(), and NwkStoreSourceRoute().

2.4 Groupcast and Multicast
The ZigBee feature set and the ZigBee Pro feature set can address a group of nodes. The ZigBee Feature
set supports a normal group transmission where the a network uses the broadcast address and a field in the
APS header specifies the group address. The radius of the data request sets the limit for how far the
transmission will travel in the network. This means that a typical groupcast is always circular and always
a single island as shown in Figure 2-8.

Figure 2-8. Groupcast

The ZigBee Pro feature set also supports a group address scheme called multicast as shown in Figure 2-9.
Multicast is enabled if the useMulticast NIB is set to TRUE (default setting) in the
mDefaultValueOfNwkUseMulticast_c.

A multicast employs a MAC broadcast and the group address at the network level. This allows the packet
to travel within a group and hop to another island of nodes without spamming the entire network with
broadcasts. The non member radius AIBsetting (gApsNonMemberRadiusDefault_c) defines how many
hops a packet takes outside a group before it “dies”.

Figure 2-9. Multicast

Both group and multicast schemes look the same from the application perspective. Both use group mode
binding or APSDE-DATA.requests. Data is delivered only to endpoints with a matching 16-bit group ID.
The only difference is the over the air behavior.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-13

2.5 Personal Area Network
The personal area network (PAN) encompasses a unique address space on a radio channel. A PAN resides
on a channel, and the same PAN identifier may be used by another network in radio range without conflict
only on a different channel. In the future, channel hopping may be permitted; for now, a PAN forms on one
channel only.

NOTE
A ZigBee coordinator starts the network; however, the ZC is not required
for the network to continue to function. This means that in the event of a ZC
failure, it will not necessarily take down the entire network.

Networks can be extended by defining a device as a router (ZR), in a role similar to that of conventional
network routers. The ZR manages routing and provides access to its child devices. A ZR can act as a ZED,
and a ZC can play the role of a ZR, establishing communication paths and managing network traffic.

Networks can be structured in conventional star, tree, mesh or mesh-tree configurations, as required by the
user’s application. Stack Profile 0x01(ZigBee Feature Set) uses mesh tree configuration and Stack Profile
0x02 (ZigBee Pro Feature Set) uses mesh only configuration.

2.6 Channels
Channels are defined in accordance with the IEEE 802.15.4 specification. BeeStack applications use
channels 11-26 in the 2.4 GHz range. For more detail on channel assignments, see Chapter 8, “Network
Layer”.

2.7 Device and Service Discovery
ZigBee devices discover other ZigBee devices by broadcasting or unicasting a message. Devices send one
of two forms of device discovery requests, an IEEE address request and a NWK address request. Service
discovery allows a node to find nodes that offer services it needs or nodes that need services it offers. For
more information, see Chapter 7, “ZigBee Device Profile”.

2.8 Addressing/Messaging
Messages can be sent from one device to another once devices have identified each other. The commands
sent to application objects at the destination address include the node’s address and the source and
destination endpoint.

There are five addressing modes in ZigBee:
• 16-bit direct: short, or network, address
• 64-bit direct: long, or IEEE address
• Indirect (uses local binding table)
• Broadcast

— All nodes
— All routers and the coordinator

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-14 Freescale Semiconductor

— All nodes that constantly monitor network traffic (RxOnWhenIdle)
— All endpoints on an individual node

• Group

Direct addressing requires the sending device to know the target device’s attributes:
• Address (which node?)
• Endpoint (which application within the node?)
• Cluster identifier (which object within the application?)

Every IEEE 802.15.4 radio has a 64-bit address that is unique in the world. Every node in a ZigBee
network has a 16-bit network address that is unique within that network. ZigBee does not send messages
with 64-bit addresses. When a ZigBee application tells the stack to send a message to an IEEE address, the
stack must find out what network address that node has before sending the message with the network
address. BeeStack Codebase 3.0.0 or later has a 64 bit address resolution feature where the APS layer
attempts to discover the 16 bit address prior to sending the packet.

Indirect addressing mode uses a local binding table to determine the destination node(s). The local binding
table can hold multiple destinations (destinations are always either direct-64 or group destinations). A
single data request can end up at multiple destinations, depending on the binding information. The binding
between source and destination must be established before the source node can use indirect addressing.
Every entry in the local binding table that contains the same source address as the data request are
considered destinations.

Nodes can broadcast messages in several ways. An application can send a message to an individual
network address and the endpoint 0xFF, which will cause the receiving stack to deliver that message to
every endpoint on the node. A message with 0xFFFF as the destination address goes to every node on the
network (within the specified radius of the message). A message to 0xFFFD goes to every device that is
always on (RxOnWhenIdle = TRUE). A message to 0xFFFC goes to every router and the coordinator.

Messages addressed to specific endpoints on a collection of devices use a single group address. That group
address may then be used to direct outgoing clusters, as well as the attributes contained in them, to each
of the devices and endpoints assigned to the group. Group addressing uses a 16-bit destination address with
the group address flag set in the APS frame control field. Included in the source are the cluster identifier,
profile identifier and source endpoint fields in the APS frame.

Endpoints require a form of sub-addressing in conjunction with the mechanisms of IEEE 802.15.4. An
endpoint number identifies individual switches and lamps, for example. A switch might use endpoint 5,
while a second switch might use endpoint 12.Each lamp that these switches control has its own endpoint
number. Endpoint 0 is reserved for device management. Each identifiable sub-unit in a node (such as the
switches and lamps) has its own specific endpoint address in the range 1-240.

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-15

2.9 Binding
Binding creates logical links between endpoints on devices, allowing them to work together to perform
specific tasks. Binding maintains information on each logical link in a binding table. The ZC or the source
device of the binding pair maintains the binding table for the network.

As shown in Figure 2-10, binding creates relationships between applications. For example, a single
network may contain many lights and switches, and binding allows any switch to control either a particular
light or a group of lights.

NOTE
Binding is unidirectional; a switch binds to a light, but not the light to the
switch.

Figure 2-10. Binding and Application Objects

2.10 Application Elements
This section introduces the application concepts, which are then detailed in later sections along with code
examples, to help designers and developers in creating new BeeStack applications.

2.10.1 Applications
Application objects define the activities and functions in BeeStack. Each application runs as a component
of the top portion of the application layer. The manufacturers that implement the various applications
define both the applications and their functionalities.

Broad areas of applications, such as building automation or home automation, fall into specific application
domains.

Radio
f1

Radio
f3

Switch 1
Endpoint 8

Switch 2
Endpoint 12

Bindings create relationships
between applications

Lighting panel functionality added
with light application object

Switch functionality added
with switch application object

Binding
Switch with 1 radio and 2 endpoints

Lighting panel with 1 radio and 5 endpoints

Light 1
9

Light 2
17

Light 1
3

Light 1
21

Light 1
13

Node

Node Endpoints

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-16 Freescale Semiconductor

Alternatively, an application profile may create sub-types within the cluster known as attributes. In this
case, the cluster is a collection of attributes specified to accompany a specific cluster identifier. Binding
decisions are made by matching the output cluster identifier to an input cluster identifier, assuming both
exist in the same profile.

Every application in BeeKit starts with BeekitAppInit.c. See Chapter 3, “BeeStack Features” for more
information.

2.10.2 Attributes
In BeeStack, an attribute is a data entity representing a physical quantity or state, a data item to read or
write. Data is communicated to other devices using commands with attributes included.

For example, a wireless UART has only clusters, and no attributes, while an ON/OFF light application uses
both the ZigBee cluster library (ZCL) and a home automation profile.

2.10.3 Clusters
Clusters contain the data flowing into or out of a device. The 16-bit cluster identifier, which is unique
within the application segment, identifies a specific cluster. Clusters can be thought of as behaving the
same way a port might in a traditional network. Within the protocol stack, the message sent from a client
gets directed to a specific point on the server side, and the attributes direct that message to the correct port,
or cluster.

The ZigBee device profile (ZDP) sends commands and responses contained in clusters, with the cluster
identifiers enumerated for each command and response. Each ZDP message is then defined as a cluster.

For example, an ON/OFF cluster sends a command from the client (the switch) to turn on or off an entity
on the server (the light). ZCL acts as a repository for cluster functionality. The ON/OFF message defines
one single attribute, containing the device’s status in binary form.

Figure 2-11. On and Off Lighting Application Stack Behavior

An application or profile uses the ZigBee cluster library (ZCL) to complete its work.

Server
(resp)

Client
(req)

On/Off On/Off

PHY layer

NWK layer

MAC layer

APL

Between nodes

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 2-17

2.10.4 Endpoints
Applications reside on endpoints, which act as independent objects. The number assigned to an endpoint
is essentially the application’s address within the ZigBee device. This allows other devices to
communicate separately with each application on a device.

BeeStack provides services to allow endpoints to find other endpoints on the network with which they can
communicate to perform their intended tasks. An application can send a message to all endpoints using
gZbBroadcastEndPoint_c.

#define gZbBroadcastEndPoint_c 0xff

A single device can have as many as 240 user application endpoints, and each endpoint can be independent
of the others. The ZDO resides as a separate application on endpoint 0.

Figure 2-12. Endpoints in ZigBee Network

Endpoints play three major roles in BeeStack. They allow the following:
• Different application profiles to exist within each node
• Separate control points to exist within each node
• Separate sensors or other devices to exist within each node

 ZigBee Overview

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

2-18 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 3-1

Chapter 3
BeeStack Features
BeeStack initializes itself by doing the following:

• Initializes the MAC and PHY layers
• Initializes the Timer Module
• Initializes the serial ports
• Switches off all the LEDs on the board
• Initializes the APS Layer
• Initializes the Application Framework
• Initializes the ZigBee Device Objects
• Initializes the NWK Layer
• Initializes the NVM Module

Every application starts in BeeAppInit(). The application task functions are called during initialization,
along with any application-specific initializations. Those commands include, for example, hardware
initialization and set up, table initialization, and power-up notification.

The function BeeStackInit() can be found in the BeeStackInit.c file; its initialization API is:
void BeeAppInit(void);

3.1 BeeStack Task Scheduler
BeeStack uses co-operative multi-tasking. Each task is a separate function that must relinquish control
often enough for the BeeStack components to get their work done in a timely manner. The BeeStack task
scheduler runs when the running task releases control. The tasks have fixed priorities, and the task
scheduler starts the highest-priority task that has an event waiting for it. If there are no tasks with events
waiting, the scheduler runs the idle task. The idle task has work of its own to do. The task scheduler is
provided as source code.

The task scheduler must be configured before it can be used to run BeeStack and the application as tasks.
Users configure Task Scheduler in BeeKit, defining the number of tasks that it handles, the task entry point
for each of the tasks, the priority of the tasks, and other configuration parameters.

The TS_Interface.h file configures Task Scheduler. The file is found in the following path:
<Installation Folder>\BeeStack\SSM\TS\Interface

A global task list defines the set of initial tasks in the application space, including at least one application
task. Optionally, tasks can be created or destroyed at run-time.

BeeStack Features

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

3-2 Freescale Semiconductor

Figure 3-1. Task Scheduler Functionality

This macro defines the task scheduler interface:
#define _TS_INTERFACE_H_

For more information on the Task Scheduler, refer to the Freescale BeeStack Platform Reference Manual,
(FSPRM)

3.2 BeeStack Application Programming Interface
This reference manual explains the BeeStack function calls and application programming interfaces
(APIs). The functions fall into two categories: synchronous and asynchronous calls.

Synchronous calls return an immediate response, in some cases with an error code. Examples include the
functional calls AF_MsgAlloc() and NlmeGetRequest().

Asynchronous calls start a process that may take seconds to complete; for example, AF_DataRequest()
sends a packet over the air to another node in the ZigBee network. Asynchronous calls have a callback
“confirm” function.

Users may customize BeeStack using the parameters and options in the files listed in Table 3-1.

For more information on the user-configurable options in BeeStack, refer to Chapter 11,
“User-Configurable BeeStack Options”.

NOTE
The tables that follow are informational only. BeeKit sets all the
configurable parameters, and no further user intervention is required.

Table 3-2 lists files that describe the BeeStack APIs. BeeStack includes both mandatory and optional files.

Table 3-1. BeeStack User-Configurable Files

File Name Description

ApplicationConf.h Contains the main configuration values (PAN ID, Channel)

BeeStackConfiguration.h Sets BeeStack table sizes and some compile time BeeStack parameters

Task Scheduler

ZDO
Tasks

Application
Tasks APS Tasks NWK Tasks

BeeStack Features

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 3-3

The BeeStack source files listed in Table 3-3 must be included in the application project workspace.

Table 3-2. BeeStack APIs

Include File Name Description

ApplicationConf.h General application configuration options (PAN ID, channel)

BeeStackConfiguration.h ZDP and stack level configuration options

AppToAfInterface.h Prototypes for AF layer calls, including sending and receiving messages over the air

ASL_ZdpInterface.h Prototypes and types for interacting with ZDP (over-the-air) API

ASL_UserInterface.h Prototypes and types for interacting with common app UI (App Support Layer) API

BeeStackInterface.h Prototypes for interacting with information bases (AIB, NIB)

BeeAppInit.h Minimal application API (for use without ASL UI)

Table 3-3. Required BeeStack Source Files

Function Description

AppStackImpl.c This source file implements the Channel and PAN ID selection logic, and frequency agility logic.

BeeStackInit.c This file implements BeeStack initialization.

BeeStackUtil.c This file contains the implementation of the functions used to save and restore information from the non
volatile memory.

ZbAppInterface.c This file contains the functions and declarations used to register the endpoints 0 and 255 for both
compile time and run time registration. It is also used to register the application endpoints at compile
time.

BeeStack Features

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

3-4 Freescale Semiconductor

3.3 Source Files – Directory Structure
BeeStack files use the following extensions:

• Source code: .c, .h
• Libraries: .lib
• S19 record format targets: .s19 (for HCS08)
• Binary file format .bin (for MC1322x)
• Memory maps: .map

Figure 3-2 shows the directory structure used for the application libraries and source files.

Figure 3-2. Library and Application File Directories

BeeStack Features

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 3-5

3.4 Miscellaneous Source Files
This section describes the source files in BeeStack which are not already described elsewhere.

Table 3-4. Required BeeStack Source Files

File Description

BeeStack_Globals.c Contains the globals that interface with the other layers (APS, ZDO, NWK). For example, this file
defines the size of the routing table and contains the routing table array.

BeeStack_Globals.h This file contains prototypes and types for BeeStack_Globals.c.

BeeStackParameters.h This file contains the type beeStackParameters_t, which contains binding and security information.

CSkipCalc.c This file contains Macros that will calculate CSkip values for a given set of max_children, max_depth
and max_routers. It does not error check, so the values must be in range to result in less than 0xfff0
nodes in the network.

ZbAppInterface.c Contains endpoint 0 description used by ZDP.

ZbAppInterface.h Header for ZbAppInterface.c.

BeeStack Features

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

3-6 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 4-1

Chapter 4
Application Framework
The BeeStack application framework (AF) defines the environment in which ZigBee devices host
application objects. Inside the application framework, application objects send and receive data through
the service access point (SAP) handlers. For example, the application sub-layer data entity service access
point (APSDE-SAP) controls data services between the application objects and the APS layer.

Layers in BeeStack communicate with each other by passing messages through SAP handler functions.
Communication with a next higher or lower layer involves two SAP handler functions. Effectively, one
SAP handler deals with messages from a layer to its next higher layer, and a second SAP handler manages
the messages from the next higher layer back to the lower layer.

Figure 4-1. BeeStack Layers and Application Framework

The APSDE-SAP data services include the request, confirm, response and indication primitives for data
transfer.

• A request primitive transfers information between peer application object entities
• A confirm primitive reports the results of a request function call
• A response primitive returns errors, acknowledgements, or other information

A p p l i c a t i o n
O b j e c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t i o n
O b j e c t

1

A p p l i c a t i o n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t

(Z D O)

ZD
O

M
anagem

entP
lane

P h y s i c a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

N L D E - S A P N L M E - S A P

N
LM

E-SAP
APSM

E-SAP

M L M E - S A PM L D E - S A P

P D - S A P P L M E - S A P

A P S D E - S A P
E n d P o i n t 0E n d p o i n t 1

A P S D E - S A P
E n d p o i n t 2 4 0
A P S D E - S A P

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

4-2 Freescale Semiconductor

• An indication primitive communicates the transfer of data from the APS to the destination
application object entity

Up to 240 distinct application objects can be defined, with each interface on an endpoint indexed from 1
to 240. ZigBee defines two additional endpoints for APSDE-SAP use:

• Endpoint 0 for the data interface to the ZDO
• Endpoint 255 for the data interface function to broadcast data to all application objects

Endpoints 241-254 are reserved for future use.

Through the ZigBee device objects (ZDO) public interfaces, the application objects provide:
• Control and management of the protocol layers in a ZigBee device
• Initiation of standard network functions

In BeeStack, applications never call on SAP handlers directly, but instead use a set of service functions.
The AF service functions are described below.

4.1 AF Types
BeeStack AF types described in Table 4-1 constitute a partial list.

Table 4-1. Application Framework Types and Definitions

Type Description

afAddrInfo_t Provides complete address information for AF_DataRequest()

afDefaultRadius_c Defines default number of hops a message takes to reach a destination address

afDeviceDef_t Defines device type

zbEndPoint_t Defines an endpoint

zbStatus_t Return value (status) of a function or service

zbIeeeAddr_t Long address. Also used for extended PAN ID.

zbPanId_t Identifies a single ZigBee network (part of IEEE 802.15.4)

zbNwkAddr_t Short address. All ZigBee data packets use the short address.

zbClusterId_t APS-level data. Determines both ZDO and application commands.

zbGroupId_t APS-level group addressing

zbProfileId_t Cluster IDs defined within a profile

zbDeviceId_t Device IDs defined within a profile

zbSceneId_t Defines the cluster ID for a programmed scheme (scene)

zbAddrMode_t Defines addressing mode

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 4-3

4.2 Endpoint Management
An application must register its endpoint with BeeStack before it can communicate with other devices.
Applications on the endpoints of other devices on the network find objects to communicate with using this
information. BeeStack application profiles use endpoints as application identifiers within a ZigBee device.

4.2.1 Simple Descriptor
The simple descriptor contains the description of an endpoint. Every endPointDesc_t structure points to a
simple descriptor structure.

The simple descriptor structure provides information to BeeStack about an endpoint. BeeStack uses this
declaration syntax for the zbSimpleDescriptor_t, defined in BeeStack_Globals.h:

typedef struct zbZbSimpleDescriptor_tag
{

 /*End point ID */
 zbEndPoint_t endPoint;
 /*Application Profile ID*/
 zbProfileId_t aAppProfId;
 /*Appliacation Device ID*/
 zbDeviceId_t aAppDeviceId;
 /*Application Device Version And APS Flag*/
 uint8_t appDevVerAndFlag;
 /*Number of Input Cluster ID Supported by the End Point*/
 zbCounter_t appNumInClusters;
 /*Place Holder for the list of Input Cluster ID*/
 uint8_t *pAppInClusterList;
 /*Number of Output Cluster ID Supported by the End Point*/
 zbCounter_t appNumOutClusters;
 /*Place Holder for the list of Output Cluster ID*/
 uint8_t *pAppOutClusterList;

}zbZbSimpleDescriptor_t;

4.2.2 Register Endpoint
Endpoints must register on the network before they can communicate with other devices.
AF_RegisterEndPoint() allows the application to receive data indications and confirms.

BeeStack endpoint registration uses two function types, the endpoint descriptor, endPointDesc_t, and
the simple descriptor, zbSimpleDescriptor_t.

This is generally accomplished in the BeeAppInit() function.

Prototype
zbStatus_t AF_RegisterEndPoint(const endPointDesc_t * pEndPoint);

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

4-4 Freescale Semiconductor

4.2.3 De-register Endpoint
An endpoint de-registers, or removes itself from the network, with the function
AF_DeRegisterEndPoint().

Prototype
zbStatus_t AF_DeRegisterEndPoint(zbEndPoint_t endPoint);

4.2.4 Get Endpoint
An endpoint is an ID number (1-240) that refers to a single object or widget in a node. Using the endpoint,
the ZigBee defined Simple Descriptor can be retrieved (see section 4.2.5) which describes the input and
output clusters and other parameters.

In addition the BeeStack defined Device Definition can be retrieved, which contains ZigBee Cluster
Library information, including the instantiation of an endpoint's data. If a node contained two
OnOffLights, then each light could be controlled independently on two separate endpoints, and the Device
Definition for that endpoint would refer to those two sets of data.

The function AF_GetEndPointDevice() retries the Device Definition from an endpoint.

Prototype
afDeviceDef_t *AF_GetEndPointDevice(zbEndPoint_t endPoint);

4.2.5 Find Endpoint Descriptor
AF_FindEndPointDescriptor() allows an application (or the stack) to convert from an endpoint
number (1-240) to a SimpleDescriptor, as described by the ZigBee specification. This helper function
looks up information contained in the simple descriptor, such as the application profile ID, application
version, or in and out clusters. See the definition of Simple Descriptor for more details.

This function AF_FindEndPointDescriptor searches for the endpoint simple descriptor based on the
endpoint ID (0x00-0xf0).

Prototype
zbSimpleDescriptor_t* AF_FindEndPointDesc(uint8_t endPoint);

Returns
• Pointer to the simple descriptor
• NULL, if not a registered endpoint

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 4-5

4.3 Message Allocation and Deallocation
AF_MsgAlloc() allows an application to allocate a message for building a larger packet to be sent using
AF_DataRequestNoCopy(). Normally, the command AF_DataRequest()only copies the payload.
The use of the AF_MsgAlloc() and AF_DataRequestNoCopy() allows an over-the-air message to be
built in-place, saving some RAM.

AF_MsgAllocFragment() allows an application to allocate messages for building a larger packet than the
regular AF_DataRequestNoCopy() supports. This feature is called fragmentation and the
AF_DataRequestFragmentedNoCopy() function must be used. Normally the command
AF_DataRequestFragmented() only copies the payload like the AF_DataRequest().

• AF_FreeDataIndicationMsg() must be used to free a data indication and will take care of freeing
all messages if the data indication is a fragmented packet that uses multiple messages.

• AF_FreeDataRequestFragments() is used for freeing the messages allocated in a fragmentation
Data request in the case that not all messages could be allocated to support the total packet payload.

BeeStack uses a pool of messages to prevent heap fragmentation used on some other ZigBee
implementation. Each message is of fixed size in an array. Over-the-air messages are called "big buffers".
There is a limited number of these buffers available (generally 5 or 6, depending on node type). See
gTotalBigMsgs_d in AppToMacPhyConfig.h to set the number of big buffers. The Freescale MAC
documentation contains more details on the message buffer system. If Fragmentation is enabled the
number of big buffers should be increased to accommodate the amount of data that the application will
send. For every 80 bytes above 78 the number of big buffers should be increased by 1.

NOTE
The configuration of Big Buffers also depends on whether High Security is
used (ZigBee Pro feature set only) because extra storage is needed for entity
authentication.

4.3.1 AF_MsgAlloc
Allocate a message buffer for building a packet to be sent via AF_DataRequestNoCopy(). Generally used
when building larger payloads in-place. Alternately, use AF_DataRequest(), where it will make a copy of
the payload.

Prototype
void * AF_MsgAlloc(uint8_t payloadLen);

Returns
• MSG_Alloc(gMaxRxTxDataLength_c);

4.3.2 AF_MsgAllocFragment
Allocates a message buffer for fragmented APSDE-DATA.requests. To be used with the function
AF_DataRequestFragmentedNoCopy(). Builds a linked list automatically for the application.

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

4-6 Freescale Semiconductor

Prototype
void *AF_MsgAllocFragment(void *pHead, uint8_t iFragLen, uint8_t **ppData)

Returns
• Allocates a message buffer for fragmented APSDE-DATA.requests
• Builds a linked list automatically for the application

4.3.3 AF_FreeDataIndicationMsg
Free the entire data indication including any messages which used fragmented data.

Prototype
void AF_FreeDataIndicationMsg(apsdeToAfMessage_t * pApsdeDataIndMsg)

Returns
• None

4.3.4 AF_FreeDataRequestFragments
Frees all fragments in a Data Request. Used if application could not allocate messages enough for the
entire message.

Prototype
void AF_FreeDataRequestFragments(void *pHead)

Returns
• None

4.4 AF Data Requests
Application Framework (AF) data requests are the primary way applications send data over the air to one
or more other nodes in a ZigBee network.

There are four functions for sending data, one that copies the application’s data payload,
AF_DataRequest(), and one that leaves the payload in place, AF_DataRequestNoCopy(). the last two
functions are for packets that are larger than the payload that AF_DataRequest supports,
AF_DataRequestFragmented(), and one that leaves the payload in place,
AF_DataRequestFragmentedNoCopy()

Data requests are asynchronous calls. They may take several seconds to process if they need to wait for a
response from another node in the network, allow for retries, or make multiple hops. For example, if using
APS ACKs (application-level end-to-end acknowledgement), it will take up to 4.5 seconds to indicate
failure to deliver the packet on the data confirm.

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 4-7

AF_DataRequest() and AF_DataRequestFragmented() send a message to the APS layer, which
sends the packet to the NWK layer, the MAC and eventually out the radio.
zbStatus_t AF_DataRequest(afAddrInfo_t *pAddrInfo, uint8_t payloadLen, void *pPayload,
zbApsCounter_t *pConfirmId);

zbStatus_t AF_DataRequestFragmented(afAddrInfo_t *pAddrInfo, uint16_t payloadLen,void
*pPayload, zbApsCounter_t *pConfirmId);

Because the payload is copied in AF_DataRequest()and AF_DataRequestFragmented(), the
payload may be a local variable on the C stack, or a global or any other data location.

For each AF_DataRequest()or AF_DataRequestFragmented(), there is exactly one data confirm.
The data confirm comes back to the application via the function BeeAppDataConfirm(). See the file
BeeApp.c in any project for additional details.

Confirms may come in a different order than they were sent, due to retries and delivery times of the packet
across the network. For example, if an application sends out 2 data requests one after the other, and the
first one needs to retry due to noise on the channel and the second one does not, the confirm will come in
for the second AF_DataRequest() before the confirm for the first AF_DataRequest().

The easiest (and recommended) method is for an application to only send out one AF_DataRequest()
at a time, and wait until the confirm before sending out another data request.

Alternately, an application can keep track of the confirm ID by providing a pointer to the
AF_DataRequest() or AF_DataRequestFragmented() in the pConfirmId parameter, to match the
confirm IDs coming into BeeAppDataConfirm(). The pConfirmId parameter can be NULL if using the
one-at-a-time method.

Sometimes an application needs to send many bytes of data as a payload on a given packet. In this case,
the AF framework provides two no-copy interfaces for data requests. A general rule of thumb is to use the
AF_DataRequestNoCopy() for payloads of more than 32 bytes, or variable length payloads that could
be more than 32 bytes. AF_DataRequestFragmentedNoCopy() should be used to avoid allocating
very large static buffers in the application, or to copy data directly from e.g. a UART driver to the messages
used to send the data request. This will save processing time and RAM.

The prototypes for the no-copy data requests are as follows:
zbStatus_t AF_DataRequestNoCopy(afAddrInfo_t *pAddrInfo, uint8_t payloadLen,
afToApsdeMessage_t *pMsg, zbApsCounter_t *pConfirmId);

zbStatus_t AF_DataRequestFragmentedNoCopy(afAddrInfo_t *pAddrInfo, afToApsdeMessage_t *pMsg,
zbApsCounter_t *pConfirmId);

Instead of the pPayload parameter there is a pMsg parameter. This message buffer is of the type used to
send to SAP handlers directly. Because of this, special care must be taken, as a message buffer leak could
cause the node to stop sending/receiving data (as it could run out of message buffers).

To allocate a message buffer, use the functions
void *AF_MsgAlloc(void);
void *AF_MsgAllocFragment(void);

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

4-8 Freescale Semiconductor

Example using AF_DataRequestNoCopy():

void SendMaxPacket(afAddrInfo_t *pAddrInfo)
{

afToApsdeMessage_t *pMsg;
uint8_t *pPayload
uint8_t maxLen;

pMsg = AF_MsgAlloc();
pPayload = AF_Payload(pMsg);
maxLen = AF_MaxPayloadLen();

/* fill entire payload with 0x33 */
FLib_MemSet(pPayload, 0x33, maxLen);
AF_DataRequestNoCopy(pAddrInfo, maxLen, pMsg, NULL);

}

Example using AF_DataRequestFragmentedNoCopy():

void Send270BytesNoCopy(afAddrInfo_t *pAddrInfo)
 {
 void *pHead;
 void *pMsg;
 uint8_t *pData;

 // allocate 270 bytes, and fill with 90 x 'A', 'B' and 'C'
 pHead = AF_MsgAllocFragment(NULL, 90, &pData);
 if(pHead)
 {
 FLib_MemSet(pData, 'A', 90);
 pMsg = AF_MsgAllocFragment(pHead, 90, &pData);
 }
 if(pMsg)
 {
 FLib_MemSet(pData, 'B', 90);
 pMsg = AF_MsgAllocFragment(pHead, 90, &pData);
 }
 if(pMsg)
 FLib_MemSet(pData, 'C', 90);

 // send the 270bytes over-the-air
 AF_DataRequestFragmentedNoCopy(pAddrInfo,270,pHead,NULL);
 }

The lower layers (APS, NWK or MAC) will free the message buffer allocated for data requests.

For both AF_DataRequest() and AF_DataRequestNoCopy(), The afAddrInfo_t structure is used to
define the destination of the packet. The structure is as follows:
typedef struct afAddrInfo_tag
{

zbAddrMode_tdstAddrMode;/* ind, group, 16, 64 */
zbApsAddr_tdstAddr;/* short, long or group */
zbEndPoint_tdstEndPoint;/* destination endpoint */

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 4-9

zbClusterId_taClusterId;/* cluster to send */
zbEndPoint_tsrcEndPoint;/* source endpoint */
zbApsTxOption_t txOptions;/* ACK */
uint8_t radiusCounter;/* radius */

} afAddrInfo_t;

Once a node is on a network, it can communicate to any other node on the network. There is no need for
binding or setting up groups. All the sending node needs is the 16-bit short address of the receiving node.

The destination address mode (dstAddrMode) affects the rest of the destination fields; it may be one of the
following:

• gZbAddrModeIndirect_c — ignores dstAddr and dstEndPoint because the destination is found in
the local binding table based on the srcEndPoint field.

• gZbAddrModeGroup_c — ignores dstEndPoint because that is always the broadcast endpoint
(0xff) on groups. dstAddr is a 16-bit group address.

• gZbAddrMode16Bit_c — uses both dstEndPoint and a 16-bit dstAddr.
• gZbAddrMode64Bit_c — uses dstEndPoint and a 64-bit dstAddr. Note that the 64-bit address is

converted locally to a 16-bit address before being sent out the radio. ZigBee always uses 16-bit
addresses, even though IEEE 802.15.4 can use 16-bit or 64-bit addresses in its messages. Make
sure to call ASL_NWK_addr_req() for the destination node before using 64-bit address mode.

The local binding table is set up through local or remote binding commands. Local binding commands use
APS functions such as APSME_BindRequest(). Remote binding commands use ZDP functions such as
ASL_EndDeviceBindRequest(). Groups are set up locally in a node using APS functions such as
APSME_AddGroupRequest() or remotely in other nodes using ZigBee Cluster Library (ZCL) functions.

The 16-bit destination address may be the address of the node or one of the following broadcast addresses:
• gaBroadcastAddress – broadcast to all nodes
• gaBroadcastZCnZR – broadcast only to routers (no end devices)
• gaBroadcastRxOnIdle – broadcast to all constantly-awake (RxOnIdle) devices

The cluster ID is up to the application. BeeStack puts no restrictions on clusters. There is a structure in
EndPointConfig.c called zbSimpleDescriptor_t. This structure, the simple descriptor, is used for
over-the-air discovery of services, but it is not used for cluster filtering.

The source endpoint must be a registered endpoint. See AF_RegisterEndPoint() and the BeeAppInit()
function.

The txOptions allow a few transmit options including
• gApsTxOptionNone_c — no APS security (NWK layer only).
• gApsTxOptionSecEnabled_c — APS layer security enabled.
• gApsTxOptionUseNwkKey_c — NWK key used for APS layer security.
• gApsTxOptionAckTx_c — Enable acknowledgements and reliable transmission. By default, the

data confirm indicates the data was sent. With ACK turned on, the data confirm indicates if the
receiving node received the packet. ACKs cause more network traffic.

• gApsTxOptionNoSecurity_c — Send a non-secure packet in a secure network. This is a Freescale
specific option.

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

4-10 Freescale Semiconductor

• gApsTxOptionSuppressRouteDiscovery_c — Normally, packets discover a route if needed. Turn
off route discovery to route along the tree. This is a Freescale specific flag option and is only
applicable for ZigBee Feature Set.

• gApsTxOptionForceRouteDiscovery_c — Normally, packets discover a route if needed. Turn on
force route discovery to discover a route before sending the packet. This is a Freescale specific
option.

• gApsTxOptionFragmentationRequested_c — enable Fragmentation Enabled. This bit is
automatically set when using the fragmentation data requests. This is a Freescale specific option.

The radius field tells ZigBee how far to send the packet before expiring the packet. Set this parameter to
0 to use the default of afDefaultRadius_c, which is twice network depth, or 10 in Stack Profile 0x01
(ZigBee Feature Set).

4.5 AF Data Indications
When an AF_DataRequest() sent by one node is received by another node, the results come into the
receiving node in the function BeeAppDataIndication() in the file BeeApp.c. The function typically
looks as follows:
void BeeAppDataIndication(void)
{
 apsdeToAfMessage_t *pMsg;
 zbApsdeDataIndication_t *pIndication;
 zbStatus_t status = gZclMfgSpecific_c;

 while(MSG_Pending(&gAppDataIndicationQueue))
 {
 /* Get a message from a queue */
 pMsg = MSG_DeQueue(&gAppDataIndicationQueue);

 /* give ZCL first crack at the frame */
 pIndication = &(pMsg->msgData.dataIndication);
 status = ZCL_InterpretFrame(pIndication);

 /* not handled by ZCL interface ... */
 if(status == gZclMfgSpecific_c)
 {
 /* insert manufacturer specific code here... */
 }

/* Free memory allocated by data indication */
 AF_FreeDataIndicationMsg(pMsg);
 }

NOTE
It is up to the application to free the message buffer. BeeStack is designed
this way so the application can keep the message for awhile if it needs to do
further processing on the message that may take time and the application
wishes to relinquish control to other tasks meanwhile. Be very careful to
free message buffers. If the message buffers are not freed, the system may
run out, which would prevent further ZigBee communication.

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 4-11

In the above example, the ZigBee Cluster Library (ZCL) is used to interpret the frame, possibly getting or
setting attributes, etc. Private profiles that do not use ZCL can interpret the pIndication directly, which
contains all the information the application needs to understand the incoming frame.

The pIndication structure is as follows:
ttypedef struct zbApsdeDataIndication_tag
{

 zbAddrMode_t dstAddrMode; /* address mode */
 zbNwkAddr_t aDstAddr; /* destination address or group */
 zbEndPoint_t dstEndPoint; /* destination endpoint */
 zbAddrMode_t srcAddrMode; /* address mode - note: always 16-bit */
 zbNwkAddr_t aSrcAddr; /* source address or group (never 64-bit) */
 zbEndPoint_t srcEndPoint; /* source endpoint */
 zbProfileId_t aProfileId; /* profile ID (filtered automatically by APS) */
 zbClusterId_t aClusterId; /* cluster ID (no filter applied to clusters) */
 uint8_t asduLength; /* length of payload (or this fragment if fragmented) */
 uint8_t *pAsdu; /* pointer to payload */
 zbStatus_t status; /* note: status field is not presented,
 as any packets that fail will not become indications */
 bool_t fWasBroadcast; /* was the packet groupcast or broadcast? */
 zbApsSecurityStatus_t fSecurityStatus; /* was the packet secure? At which layers? */
 uint8_t linkQuality; /* link quality from network layer */
 zbTime_t rxTime; /* vendor specific time packet was received (always 0) */
 zbRxFragmentedHdr_t fragmentHdr; /* only present if txOptions &
 gApsTxOptionFragmentationRequested_c */
} zbApsdeDataIndication_t;

An application can tell whether the packet was broadcast or sent directly, whether the packet was secured
or not, what the link quality was on that particular packet and whether the packet was sent to a group or
unicast to this individual node.

The lower layers will have already filtered packets that do not match the node criteria, do not match the
profile ID of the receiving endpoint, and do not match the group (if any) on that endpoint. The lower layers
also filter out duplicates so the application does not need any logic to handle duplicates packets.

The application is responsible for filtering based on clusters.

Make sure that the each endpoint to receive data is registered, using AF_RegisterEndpoint(). This is
generally done in the BeeAppInit() function.

There is no attribute in the data indication. Attributes are a ZigBee Cluster Library concept and are not
used in private profiles.

Application Framework

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

4-12 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 5-1

Chapter 5
Application Support Sub-layer
The application support sub-layer (APS) provides the interface between the NWK layer and the
application layer.

The BeeStack application support sub-layer (APS) roles include:
• Maintaining tables for binding, or matching two devices together based on their services and their

needs
• Forwarding messages between bound devices
• Group address definition, removal and filtering of group addressed messages
• Mapping between 64-bit IEEE addresses and 16-bit NWK addresses
• Reliable data transport

Figure 5-1. BeeStack Application Support Sub-Layer Elements

A general set of services supports communication with ZigBee device objects (ZDO) and the
manufacturer-defined application objects. The APS interface to the next higher and next lower layers
utilizes two entities: the data (service) entity and the management (service) entity.

• The APS data entity (APSDE) provides over-the-air data transmission service via its service access
point (SAP), the APSDE-SAP

A p p l i c a t i o n
O b j e c t

2 4 0

Se
cu

rit
y

Se
rv

ic
e

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t i o n
O b j e c t

1

A p p l i c a t i o n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t

(Z D O)

ZD
O

M
anagem

entP
lane

P h y s i c a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

E n d p o i n t 2 4 0
A P S D E - S A P

E n d p o i n t 1
A P S D E - S A P

N
LM

E-SAP

M L D E - S A P M L M E - S A P

P D - S A P P L M E - S A P

APSM
E-SAP

A P S D E - S A P
E n d P o i n t 0

N L M E - S A PN L D E - S A P

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

5-2 Freescale Semiconductor

• The APS management entity (APSME) provides management service with its APSME-SAP and
maintains a database of managed objects known as the APS information base (AIB)

5.1 Direct and Indirect Data Addressing
Direct addressing requires either the short or extended (also called long, MAC or IEEE) address of the
target or destination device. The APS layer maintains the short address and its corresponding extended
address in the AIB.

While network addresses depend on the network topology and the device’s network association, the
extended address is unique to the device, and does not change with the network topology.

With indirect addressing, a device sends the data without a destination address, which must be looked up
in a binding table. The binding table can be on the device generating the message, or it can be on the ZC.
If it is the latter, the message must go to the ZC for destination lookup and retransmission to the destination
device or devices.

5.2 APS Layer Interface
In the APS layer, the APSME primitives affect the local node only, and they use internal (not ZigBee)
formats for many parameters.

Use the ZDP versions of these functions when communicating to other nodes, or when using ZigBee
standard over-the-air formats. The ASPDE functions affect the over-the-air (OTA) data.

The macros in this section use the given attributeId to call the appropriate macro.

5.2.1 Get Request
This macro retrieves values (attributes) from the APS information base (AIB).
#define ApsmeGetRequest(attributeId, pValue) \ ApsmeGetRequest_##attributeId(pValue)

Declaration syntax:
typedef struct apsmeGetReq_tag{

uint8_t aibAttribute;
uint8_t *pAibAttributeValue;

}apsmeGetReq_t;

The following attributes may be retrieved using ApsmeGetRequest():

gApsDesignatedCoordinator_c

ApsUseInsecureJoin_c

gApsChannelMask_c

gApsUseExtendedPANID_c

gApsNonmemberRadius_c

gApsMaxWindowSize_c

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 5-3

gApsInterframeDelay_c

gApsMaxFragmentLength_c

gApsChannelFailureRate_c

gApsChannelTimer_c
gApsTrustCenterAddress_c Usually ZC IEEE address
gApsTrustCenterNwkAddress_c Usually 0x0000 (ZC)
gApsSecurityTimeOutPeriod_c Timeout for authentication
gApsDeviceKeyPairSet_c
gApsTrustCenterMasterKey_c
gApsTrustCenterLinkKey_c
gApsDefaultKeyType_c

The following Attributes may be retrieved using ApsmeGetRequestTableEntry():
gApsAddressMap_c Retrieve an entry from the address map
gApsBindingTable_c Retrieve an entry from the binding table
gApsGroupTable_c Retrieve an entry from the group table

The ApsmeGetRequestTableEntry() macro is used when the entry is not a single item, but an array of
items. It is prototyped as follows:
void * ApsmeGetTableEntry(uint8_t attributeId, uint8_t index);

The return is one item in the table. Care must be taken not to read past the end of the table. The index
should be 0 - (n-1), where n is the number of elements in the table. Use gMaxAddressMapEntries,
gMaxBindingEntries, and giMaxGroups respectively. Note that the tables are in BeeStack internal form.
Use the ZDP Management functions to retrieve the entries in ZigBee over-the-air form. The types for the
returned entry are:

• apsBindingTable_t
• zbAddressMap_t
• zbGroupTable_t

5.2.2 Set Request
ZDO uses this macro to set a simple attribute in the AIB.
#define ApsmeSetRequest(attributeId, pValue)
ApsmeSetRequest_##attributeId(pValue

Use ApsmeGetRequestTableEntry() for table entries. This function is prototyped as:
void ApsmeSetRequestTableEntry
(
 uint8_t attributeId,
 uint8_t index,
 void *pValue
);

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

5-4 Freescale Semiconductor

5.2.3 Get Table Entry
This macro requests an entry from an AIB table attribute (for example, an address map).
#define ApsmeGetRequestTableEntry(attributeId,index) \ ApsmeGetRequest_##attributeId(index)

5.2.4 Set Table Entry
This macro attempts to set an entry in an AIB table.
#define ApsmeSetRequestTableEntry(attributeId,index,pValue) \
ApsmeSetRequest_##attributeId(index,pValue)

5.2.5 Add to Address Map
This function, APS_AddToAddressMap , seeks to add a device’s IEEE address to the network address
table.
addrMapIndex_t APS_AddToAddressMap(zbIeeeAddr_t aExtAddr, zbNwkAddr_t aNwkAddr);

The index returned is either 0 - (gMaxAddressMapEntries-1), or gAddressMapFull_c to indicate it
couldn't be added because the table is full. The address map associates a 16-bit NWK address with a 64-bit
IEEE address, and is updated automatically with end-device-announce.

5.2.6 Remove from Address Map
The function APS_RemoveFromAddressMap() removes from the address map an entry found by its IEEE
address. It does not return a status, and will do nothing if the address is not already in the address map. The
only parameter is an IEEE address to remove.

Prototype
void APS_RemoveFromAddressMap(zbIeeeAddr_t aExtAddr);

5.2.7 Find IEEE Address in Address Map
The function APS_FindIeeeInAddressMap() initiates a search through the address map for the IEEE
address.

Prototype
addrMapIndex_t APS_FindIeeeInAddressMap(zbIeeeAddr_t aExtAddr);Returns

Returns
• Index into that item, if found
• gNotInAddressMap_c, if not found

5.2.8 Get NWK Address from IEEE Address
The function APS_GetNwkAddress requests the network address based on a device’s IEEE address.

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 5-5

Prototype
uint8_t* APS_GetNwkAddress(uint8_t * pExtAddr);

Returns
• Pointer to the NWK (short) address, given an IEEE (long) address
• NULL, if not self or in address map

5.2.9 Get IEEE Address from NWK Address
The function APS_GetIeeeAddress requests the IEEE address based on known NWK address.

Prototype
uint8_t *APS_GetIeeeAddress(uint8_t *pNwkAddr);

Returns
• Pointer to the IEEE (long) address, given a NWK (short) address
• NULL, if not self or in address map

5.3 Binding
Binding creates logical links between application devices and endpoints to allow them to work together to
perform specific tasks. Binding maintains information on each logical link in a binding table. Each source
node maintains its own binding table, or the ZC maintains the binding table for the network.

Binding is not necessary for ZigBee communication. Group or direct mode can be used instead. However,
binding can be useful because binding tables are automatically updated if an end-device node moves to a
new parent in the network. Binding also allows the destination address/endpoint information to be set up
by a commissioning tool.

ZDO issues a primitive to the APS layer to initiate the binding operation on a device that supports a binding
table. This in-memory association has no over-the-air behavior.

5.3.1 Bind Request
The function APSME_BindRequest initiates the unidirectional bind request. This is a synchronous call.

Prototype
zbStatus_t APSME_BindRequest(zbApsmeBindReq_t* pBindReq);

Returns
• gZbSuccess_t if binding worked
• gZbIllegalDevice_t if the short or long address is not valid
• gZbIllegalRequest_t if the device is not on a network
• gZbTableFull_t if the table is full

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

5-6 Freescale Semiconductor

• gZbNotSupported_t if binding is not supported
• gZdoDeviceNotFound_c if device is not found in address map

5.3.2 Unbind Request
This function APS_UnbindRequest unbinds, or breaks the logical link between devices. This is an
in-memory association only, with no over-the-air behavior.

Prototype
zbStatus_t APSME_UnbindRequest(zbApsmeBindReq_t* pBindReq);

 Returns
• gZbSuccess_t if it worked
• gZbIllegalDevice_t if the short or long address is not valid
• gZbIllegalRequest_t if the device is not on a network
• gZbTableFull_t if the table is full
• gZbNotSupported_t if binding is not supported
• gZdoDeviceNotFound_c if device is not found in address map

5.3.3 Find Binding Entry
The function APS_FindBindingEntry looks through the binding table for the entry described by
*pBindEntry. The cluster for this helper function is ignored for matching.

Prototype
bindIndex_t APS_FindBindingEntry(zbApsmeBindEntry_t* pBindEntry);

Returns
• Index into binding table if entry exists
• gApsNotInBindingTable_c if not found

5.3.4 Find Next Binding Entry
The function APS_FindNextBindingEntry is used internally by the APSDE-DATA.request primitive.
This function requests the next binding entry based on the source endpoint, and start index.

Prototype
bindIndex_t APS_FindNextBindingEntry(bindIndex_t iStartIndex, zbEndPoint_t srcEndPoint,
zbIeeeAddr_t aExtAddr);

Returns
• Index to the binding entry

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 5-7

• gApsNotInBindingTable_c if not found

5.3.5 Clear Binding Table
The APS_ClearBindingTable function call clears every entry in the binding table.

Prototype
void APS_ClearBindingTable(void);

The function call returns no value.

5.3.6 Add Group Request
Nodes may have multiple endpoints. Before adding an endpoint to a group, the endpoint must be a
registered endpoint on its node. Note that the endpoint is an endpoint number (1-240), not an index into
the endpoint array (0-n).

The function APSME_AddGroupRequest adds an endpoint to a specified group.

Prototype
zbStatus_t APSME_AddGroupRequest(zbApsmeAddGroupReq_t *pRequest);

Returns
• gZbSuccess_c, if it worked
• gZbTableFull_c, if the group table is full

For more information, see APSME-ADD-GROUP.request in the ZigBee Specifications, r13.

5.3.7 Remove Group Request
Remove the endpoint from the group using APSME_RemoveGroupRequest.

Prototype
zbStatus_t APSME_RemoveGroupRequest(zbApsmeRemoveGroupReq_t *pRequest);

Returns
• gZbSuccess_c, if removal succeeded
• gZbNoMatch_c, if group invalid or endpoint not part of group

See APSME-REMOVE-GROUP.request in Section 2.2.4.5.3, ZigBee Specifications, r13.

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

5-8 Freescale Semiconductor

5.3.8 Remove Endpoint from All Groups Request
Remove a given endpoint from all groups with APSME_RemoveAllGroupsRequest.

Prototype
zbStatus_t APSME_RemoveAllGroupsRequest(zbApsmeRemoveAllGroupsReq_t *pRequest);

Returns
• gZbSuccess_c, if removal succeeded
• gZbInvalidEndpoint_c, if removal failed

NOTE
To remove all groups, call ApsGroupReset().

For more information, see APSME-REMOVE-ALL-GROUPS.request in the ZigBee Specifications, r13.

5.3.9 Identify Endpoint Group Membership
This internal function confirms that the endpoint is a member of a specified group.

Prototype
bool_t ApsGroupIsMemberOfEndpoint(zbGroupId_t aGroupId, zbEndPoint_t endPoint);

Returns

It returns TRUE or FALSE.

5.3.10 Group Reset Function
This function resets or removes all groups.

Prototype
void ApsGroupReset(void);

Returns

This function does not return a value.

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 5-9

5.4 AIB Attributes
The attributes shown in Table 5-1 manage the APS layer in BeeStack.

Table 5-1. APS Information Base Attributes

Attribute ID Type Range Description Default

apsAddressMap 0xc0 Set Variable Current set of 64 bit IEEE to 16 bit NWK address maps Null set

apsBindingTable 0xc1 Set Variable Current set of binding table entries in the device Null set

apsGroupTable 0x0c2 Set Variable Current set of group table entries Null set

Application Support Sub-layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

5-10 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-1

Chapter 6
ZigBee Device Objects
ZigBee device objects (ZDO) provide an interface between the application objects, the device profile, and
the APS layer. As part of the application layer, ZDO meets common requirements of all applications
operating in BeeStack.

ZDO responsibilities include:
• Initializing the APS and NWK layers and the Security Service Provider (SSP).
• Assembling configuration information from the end applications to determine and implement

discovery, security management, network management, and binding management.

The ZDO interface utilizes the APSDE-SAP for data and the APSME-SAP for control messages.

ZDO presents public interfaces to the application objects in the AF layer for control of device and network
functions by the application objects. ZDO communicates with the lower portions of the ZigBee protocol
stack on endpoint 0.

Figure 6-1. ZigBee Device Objects in BeeStack

A p p l i c a t i o n
O b j e c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t i o n
O b j e c t

1

A p p l i c a t i o n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t

(Z D O)

ZD
O

M
anagem

entP
lane

AP
SM

E-S
AP

N L D E - S A P N L M E - S A P

N
LM

E-S
AP

M L M E - S A PM L D E - S A P

P h y s i c a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

P L M E - S A PP D - S A P

A P S D E - S A P
E n d P o i n t 0E n d p o i n t 1

A P S D E - S A P
E n d p o i n t 2 4 0
A P S D E - S A P

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-2 Freescale Semiconductor

6.1 ZDO State Machine
The ZDO state machine process is automated. The descriptions provided here clarify the behavior of the
devices. Most important are the functions for starting and stopping the state machine.

If the non volatile memory (NVM) module is enabled, some of the data gathered for the device
configuration is stored in NVM. Figure 6-2 shows the ZDO state machine for BeeStack Codebase version
3.0.0 and higher.

Figure 6-2. ZDO State Machine Overview

State description:
• The Initial state "gZdoInitialState_c" state is where ZDO always starts (this is off the network)
• The Discovering Networks state "gZdoDiscoveringNetworksState_c" is where it finds networks.

The network layer keeps a copy of the energy scan (ZC only) and list of other ZigBee/802.15.4
devices. The ZDO layer frees this memory when finished. Discovery will continue for a certain
amount of time, or when a certain number of tries have been attempted.

• The Forming state "gZdoFormingState_c" is for ZC and Zx (in coordinator mode) devices. If
forming fails, it goes back to discovery state.

• The Joining state "gZdoJoiningState_c" is for ZR, ZED and Zx (in router/end-device modes)
devices. If joining fails it goes back to discovery state.

In itia l S tate

Form ing

Running State

Stop State

D iscovering Networks

Rem ote Com m ands

Joining

Leaving

Authenticating Device

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-3

• The Authenticating Device state "gZdoDeviceAuthenticationState_c" is for security ZRs and
ZEDs. If this state fails, goes back to network discovery state.

• The Running state "gZdoRunningState_c" indicates that the device is running and can now
send/receive packets.

• The Remote Commands state "gZdoRemoteCommandsState_c" is used for remote devices causing
this device to perform things such as a scan for networks, or changing channels. Once complete,
this goes back to running state.

• The Leaving state "gZdoLeavingState_c" means this device is cleanly leaving the network, which
will allow other devices in the network to clean up their tables automatically. A ZR or ZC may also
tell its children to leave.

• The Stop State "gZdoStoppingState_c" means this device is stopping. This cannot fail. The device
stops and alternately clears out NVM.

Each state has a number of sub-states caused by "events". See the ZdoStatemachinehandle.h for each state
to see what these are.

The overall ZDO process, when ZDO_Start() is called by the application begins with a network discovery
[ND] attempt. Once the best selection of beacons are gathered, the form (ZC) or join (ZR, ZED) attempt
is made. If that fails, that starts over again, up to a user selected length of time and number of attempts,
whichever comes first. See Figure 6-3:

+------------------------------ (T) ------------------------------------+
| |
 [ES][AS](B)[AS](B)[AS][FJ]...(RI)...[ES][AS](B)[AS](B)[AS][FJ]...(RI)....
| |
+----------- [ND] -------+

Figure 6-3. ZDO Process

The properties that define the various configurable number of attempts and time-outs, as well as the figure
key, are as follows:
(T) Total Time-out, mDefaultValueOfFormationAttemptsTimeOut_c(ZC),

mDefaultValueOfDiscoveryAttemptsTimeOut_c(ZR,ZED) (sec)
[ES] Energy Scan (ZC only), gScanDuration_c (802.15.4 MAC exponential wait)
[AS] Active Scan (all device types), gScanDuration_c (802.15.4 MAC exponential

wait)
(B) Time Between Active Scans, mDefaultValueOfNwkTimeBwnScans_c (ms)
[FJ] Form or join attempt. If this fails, will wait the rejoin interval. If it works, it goes

to authenticating/running state.
(RI) Rejoin interval, mDefaultValueOfRejoinInterval_c (sec), configurable through

the SAS and commissioning cluster
[ND] Network Discovery attempt. This will occur 'N' number of times, where 'N' is

mDefaultValueOfNwkFormationAttempts_c or
mDefaultValueOfNwkDiscoveryAttempts_c

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-4 Freescale Semiconductor

For more information, see Table 1.48 in the ZigBee Specification: Config_NWK_Scan_Attempts [ZCL
Commissioning Cluster], ScanAttempts NlmeGetRequest(gNwkScanAttempts_c).

The mDefaultValueOfNwkScanAttempts_c function describes how many times to discover networks
before attempting to form or join. Trying multiple times helps in a noisy or dense network environment.

6.2 General ZDO Interfaces (Codebase Version 3.0.0 and Higher)
This section includes the general ZDO macros and functions to all devices, regardless of their role (ZC,
ZR, ZED or Combo device).

NOTE
To maintain some backwards compatibility, some older version APIs can
still be used.

6.2.1 Get State Machine
This macro retrieves the current state of the ZDO machine. The states for ZDO are defined in ZdoCommon.h.
Generally, this function is not needed since the change in ZDO state is reported to the ASL through the use
of ASL_ZdoCallBack(). If not using ASL, the application can register to receive ZDO state change
information using Zdp_AppRegisterCallBack().

Macro
#define ZDO_GetState()(gZDOState)

The following states for ZDO are defined in BeeStack (internal use only states are not shown).
gZdoInitialState_c Initial state
gZdoDiscoveringNetworksState_c Network discovery in progress
gZdoFormingState_c Attempting to form a network, only valid for ZC
gZdoJoiningState_c Attempting to join a network, only valid for ZR, ZED
gZdoOrphanJoiningState_c Attempting to orphan join a network, only valid for ZR, ZED
gZdoCoordinatorRunningState_c Network formed, only valid for ZC
gZdoRouterRunningState_c Network joined, only valid for ZR
gZdoEndDeviceRunningState_c Network joined, only valid for ZED
gZdoRunningState_c Device is running, network joined or formed (any device type)
gZdoDeviceAuthenticationState_c Waiting for authentication to complete only valid for ZR, ZED
gZdoRemoteCommandsState_c Executing a command received over the air.(ZDP commands)
gZdoDeviceWaitingForKeyState_c Waiting for a Link Key
gZdoLeavingState_c Announcing that the device is leaving the network

gZdoStoppingState_c Stop state, resets stack

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-5

6.2.2 Start ZDO State Machine
The function ZDO_Start() initializes the device using one of the following start options:
DDDx xxxx Device type
xxxS Sxxx Startup set
xxxx xCCC Startup control mode

Choose one of these, or leave field set to 0 to use previous setting (ignored if not a Combo device):
gZdoStartMode_Zc_c 0xc0 - start as ZC (combo device only)
gZdoStartMode_Zr_c 0x80 - start as ZR (combo device only)
gZdoStartMode_Zed_c 0x20 - start as ZED (combo device only)
gZdoStartMode_ZedRx_c 0x60 - start as RxOnIdle=TRUE ZED (combo device only)

Choose one of these options:
gZdoStartMode_NvmSet_c 0x00 - copy NVM set (if any) to working set, then start. If no NVM, use

ROM set.
gZdoStartMode_RomSet_c 0x08 - copy ROM set to working set (factory defaults), then start
gZdoStartMode_RamSet_c 0x10 - use working startup set in RAM.
gZdoStartMode_SasSet_c 0x18 - copy commissioning cluster set to working set, then start. If not

valid, use NVM set.

Choose one of these (see also NLME-JOIN.request and zbNwkJoinMode_t in ZigBee.h) T he order of
these must match NLME-JOIN.request:
gZdoStartMode_Associate_c 0x00 (default) use association (ZR, ZED only), or form (ZC)
gZdoStartMode_OrphanRejoin_c 0x01 FS specific: use orphan rejoin (ZR, ZED only)
gZdoStartMode_NwkRejoin_c 0x02 use NWK rejoin (ZR, ZED only)
gZdoStartMode_FindAndRejoin_c 0x03 for ZR, ZED only, search for network on this and other

channels, then silent join
gZdoStartMode_SilentStart_c 0x04 - already part of the network (no form/join needed)
gZdoStartMode_StartMask_c 0x07 - mask for above fields

Default Mode:
gZdoStartMode_Default_c (gZdoStartMode_Associate_c | gZdoStartMode_NvmSet_c)

Function
void ZDO_Start(ZdoStartMode_t startMode)

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-6 Freescale Semiconductor

6.2.3 Stop With Mode Select
This function allows full application control of how to leave the network and/or stop its ZDO state
machine.

The following stop modes are available:
stop mode bit mask for ZDO_StopEx():
xxxx xxxA Announce (leave) before stopping
xxxx xxCx Remove children if announce leave is active.
Nxxx xxxx Reset NVM
xRxx xxxx Restart after stopping
xxBx xxxx Do not reset binding and group tables

Function
void ZDO_StopEx(ZdoStopMode_t stopMode);

6.2.4 Stop ZDO State Machine
This function instructs a device to stop its ZDO State machine. It calls
ZDO_StopEx(gZdoStopMode_Stop_c). This function is available to maintain backward compatibility.

Macro
void ZDO_Stop(void)

6.2.5 Stop ZDO and Leave
This function sends the command to leave the network to a device and then stop its ZDO state machine.
Calls ZDO_StopEx(gZdoStopMode_Announce_c | gZdoStopMode_ResetTables_c |
gZdoStopMode_ResetNvm_c);. This function is available to maintain backward compatibility.

Function
void ZDO_Leave(stop)

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-7

6.3 General ZDO Interfaces (CodeBase Versions Before 3.0.0)
This section includes the general ZDO macros and functions to all devices, regardless of their role (ZC,
ZR, or ZED).

6.3.1 Get State Machine
This macro retrieves the current state of the ZDO machine. The states for ZDO are defined in ZdoCommon.h.
Generally, this function is not needed since the change in ZDO state is reported to ASL through the use of
ASL_ZdoCallBack(). If not using ASL, the application can register to receive ZDO state change
information using Zdp_AppRegisterCallBack().

Macro
#define ZDO_GetState()(gZDOState)

The following states for ZDO are defined in BeeStack (internal use only states are not shown):
gZdoInitialState_c Initial state
gZdoDiscoveringNetworksState_c Network discovery in progress
gZdoFormingState_c Attempting to form a network, only valid for ZC
gZdoJoiningState_c Attempting to join a network, only valid for ZR, ZED
gZdoOrphanJoiningState_c Attempting to orphan join a network, only valid for ZR, ZED
gZdoCoordinatorRunningState_c Network formed, only valid for ZC
gZdoRouterRunningState_c Network joined, only valid for ZR
gZdoEndDeviceRunningState_c Network joined, only valid for ZED
gZdoRunningState_c Device is running, network joined or formed (any device type)
gZdoDeviceAuthenticationState_c Waiting for authentication to complete only valid for ZR, ZED
gZdoRemoteCommandsState_c Executing a command received over the air.(ZDP commands)
gZdoDeviceWaitingForKeyState_c Waiting for a Link Key
gZdoLeavingState_c Announcing that the device is leaving the network
gZdoStoppingState_c Stop state, resets stack

6.3.2 Start ZDO State Machine without NVM
The function ZDO_Start(gStartWithoutNWM_c) initializes the device using the default values.

Macro
#define ZDO_Start(gStartWithOutNvm_c)

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-8 Freescale Semiconductor

6.3.3 Start ZDO State Machine with NVM
Starting the ZDO state machine with NVM recovers all of the values from memory; for example,
neighbors, routes, and other stored information.

Macro
#define ZDO_Start (startMode)

The start mode parameter can be any one of the following:
gStartWithOutNvm_c Allows a device to join the network fresh, without restoring NVM.
gStartAssociationRejoinWithNvm_c Allows a device to rejoin the network with the association

procedure using the PAN information from its memory.
gStartOrphanRejoinWithNvm_c Allows a device to rejoin the network with the orphan procedure

 using the information from its memory.
gStartNwkRejoinWithNvm_c Allows a device to rejoin the network at the NWK layer with the

information from its memory using rejoin command.
gStartSilentRejoinWithNvm_c Allows a device to rejoin a network, and restores information from

its memory, without notifying other devices of its return to the
network.

gStartSilentRejoinWithOutNvm_c Allows a device to rejoin a network, does not restore
information from its memory, and does not notify other devices
of its return to the network.

gStartSilentNwkRejoin_c Allows a device to rejoin a network, restores
information from its memory, and does not notify other devices
of its return to the network.

6.3.4 Stop ZDO State Machine
This macro instructs a device to stop its ZDO State machine.

Macro
#define ZDO_Stop()

6.3.5 Stop ZDO and Leave
This macro sends to a device the command to leave the network and then stop its ZDO state machine.

Macro
#define ZDO_Leave()

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-9

6.4 Device Specific ZDO Interfaces
These ZDO macros and functions, while specific to the ZC, ZR, or ZC, again are automated, and the
information that follows describes their behavior.

For each device, there are events that are supported only for the specific state. For example, when a ZC is
in running state, it cannot process a start event.

6.4.1 ZC State Machine
The ZC state machine supports several events depending upon its state.

This macro can change its state:
ZDOCoordinatorChangeState(state)

When in any of the following states, there are limited events supported for the coordinator.

6.4.1.1 ZC Initial State
When an application starts, restarts or resets a coordinator, it enters initial machine state and restores any
required information from NVM.

When in initial machine state, the ZC machine state supports these events:
• gStartWithOutNvm_c
• gStartAssociationRejoinWithNvm_c
• gStartOrphanRejoinWithNvm_c
• gStartNwkRejoinWithNvm_c
• gStartSilentRejoinWithNvm_c

6.4.1.2 ZC Starting State
The ZC enters starting state following initial state, and after restoring any required information from
NVM.

When in starting machine state, the ZC machine state supports:
• gZDO_StartNetworkFormation_c
• gZDO_NetworkFormationSuccess_c
• gZDO_NetworkFormationFailed_c
• gZDO_Timeout_c

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-10 Freescale Semiconductor

6.4.1.3 ZC Running State
In running machine state, the ZC machine state supports:

• gStop_c
• gKeyTransferInitiated_c
• gManagementCommandSent_c
• gChildLeaveSuccess_c

6.4.1.4 ZC Key Transfer state
This machine state supports the following event only with the key transfer initialized.

• gKeyTransferSuccess_c

6.4.1.5 ZC Stop State
A ZC enters stop state when network formation fails or an application tells the device to stop. Additionally,
this clears the stack and NVM.

The ZC stop state supports this event:
• gZdoStopState_c

6.4.1.6 ZC Remote Commands State
The ZC enters the remote command state when the device receives any remote command. A ZC moves to
running state upon receipt of the remote command.

• gZdoRemoteCommandsState_c

6.4.2 ZR State Machine
The router state machine supports several events depending upon its state.

This macro can change its state:
ZDORouterChangeState(state)

The router can be in any of the following states. When in any given state, there are limited events that are
supported.

6.4.2.1 ZR Initial Machine State
When in initial machine state, the ZR machine supports these events:

• gStartWithOutNvm_c
• gStartAssociationRejoinWithNvm_c
• gStartOrphanRejoinWithNvm_c
• gStartNwkRejoinWithNvm_c
• gStartSilentRejoinWithNvm_c

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-11

• gStartSilentRejoinWithOutNvm_c
• gStartSilentNwkRejoin_c

In the case of StartSilentRejoinWithNvm, a device can join the network and restore information from its
memory without notifying other devices of its return to the network.

6.4.2.2 ZR Discovery in Progress State
If in discovery-in-progress state, the ZR machine state supports these events:

• gZDO_StartNetworkDiscovery_c
• gZDO_NetworkDiscoverySuccess_c
• gZDO_NetworkDiscoveryFailed_c

6.4.2.3 ZR Joining In Progress State
If in joining-in-progress state, the ZR machine state supports these events:

• gZDO_StartJoiningNetwork_c
• gZDO_StartRouterSuccess_c
• gZDO_JoinFailed_c

6.4.2.4 ZR Running State
When a join or authentication (in a secured network) request succeeds, a ZR enters running state.

ZR running state supports these events:
• gStartDevice_c
• gKeyTransferInitiated_c
• gStartSilentNwkRejoin_c
• gStop_c
• gAnnceStop_c
• gChildLeaveSuccess_c
• gManagementCommandSent_c

6.4.2.5 ZR Leave-In-Progress State
A ZED enters the leave-in-progress state when it initiates or receives a leave request, or if it receives the
stop request from the application.

ZED leave-in-progress state supports the following events:
• gZDO_DeviceLeftNetwork_c
• gZDO_DeviceLeftNetwork_c
• ZDO_StartLeaving_c

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-12 Freescale Semiconductor

6.4.2.6 ZR Stop State Machine
A ZR enters stop state when discovery, join, or authentication fails, or an application sends a stop request.
Additionally, this clears the stack and NVM.

ZR stop state machine supports the following event:
• gStop_c

6.4.3 ZED Machine State
This macro can change the ZED machine state:
ZDOEnddeviceChangeState(state)

When in any of the following states, there are limited events supported for an end device.

6.4.3.1 ZED Initial State
An application starts, restarts, or resets a ZED, which triggers initial machine state and restores all
information from NVM, if required.

When in initial machine state, the ZED state machine supports these events:
• gStartAssociationRejoinWithNvm_c
• gStartOrphanRejoinWithNvm_c
• gStartNwkRejoinWithNvm_c
• gStartSilentRejoinWithNvm_c

6.4.3.2 ZED Discovery In Progress State
Following initial machine state, a ZED enters discovery-in-progress state and seeks out a parent device so
that it can join the network by the discovery process.

The ZED discovery-in-progress machine state supports the following events:
• gZDO_StartNetworkDiscovery_c
• gZDO_NetworkDiscoverySuccess_c
• gZDO_NetworkDiscoveryFailed_c
• gZDO_TimeoutBetweenScan_c
• gZDO_Timeout_c

6.4.3.3 ZED Joining In Progress State
If the ZED succeeded in discovering a network then it enters a joining-in-progress machine state.

This ZED machine state supports the following events:
• gZDO_StartJoiningNetwork_c
• gZDO_JoinSuccess_c
• gZDO_JoinFailed_c

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-13

• gAuthenticationInitiated_c

6.4.3.4 ZED Orphan Join State
A ZED may try to join the network by the orphan scan process after the initial state.

When in this state, the ZED orphan join state supports these events:
• gZDO_StartOrphanJoin_c
• gZDO_JoinSuccess_c
• gZDO_JoinFailed_c
• gZDO_Timeout_c

6.4.3.5 ZED Running State
When a join or authentication (in a secured network) request succeeds, a ZED enters running state.

ZED running state supports these events:
• gStartDevice_c
• gStartNwkRejoinWithNvm_c
• gStop_c
• gAnnceStop_c
• gManagementCommandSent_c

6.4.3.6 ZED Leave-In-Progress State
A ZED enters the leave-in-progress state when it initiates or receives a leave request, or if it receives the
stop request from the application.

ZED leave-in-progress state supports the following events:
• gZDO_DeviceLeftNetwork_c
• gZDO_DeviceLeftNetwork_c
• ZDO_StartLeaving_c

6.4.3.7 ZED Stop State Machine
A ZED enters stop state when discovery, join, or authentication fails, or an application sends a stop request.
Additionally, this clears the stack and NVM.

ZED stop state machine supports the following event:
• gStop_c

6.4.3.8 ZED Authentication State
A ZED enters device authentication state once the connection to a network succeeds with security enabled.
This applies to residential security mode only.

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-14 Freescale Semiconductor

Device authentication state for the ZED supports the following events:
• gZdoDeviceAuthenticationState_c
• gAuthenticationSuccess_c
• gAuthenticationFailure_c
• gZDO_DeviceLeftNetwork_c

6.4.3.9 ZED Remote Command State
A ZED enters the remote command state when the device receives any remote command. The ZED moves
to running state upon receipt of the remote command.

The ZED remote command state supports the following event:
• gZDO_MgmtResponseSent_c

6.5 Selecting PAN ID, Channel and Parent
The choice of PAN ID, channel and parent are all under application control for all BeeStack nodes.

By default, BeeStack uses the following algorithm to select a PAN ID and Channel when forming a
network (ZC only):

• The set of channels is defined by mDefaultValueOfChannel_c
• Of the set of channels, look for the channel with the fewest network
• Of the channels with the fewest networks find the channel with the least noise
• Choose use the MAC address for extended PAN ID if mDefaultNwkExtendedPANID_c is all

0x00s, otherwise use mDefaultNwkExtendedPANID_c for the extended PAN ID
• Choose a random 16-bit PAN ID if mDefaultValueOfPanId_c is 0xff, 0xff, otherwise use

mDefaultValueOfPanId_c
• Do not form the network if the PAN ID (extended or 16-bit) is already in use. Use a random PAN

By default, BeeStack uses the following algorithm to select an appropriate parent and channel when
joining a network (ZC and ZED only):

• The set of channels is defined by mDefaultValueOfChannel_c
• In the set of channels, look for at least one node from each network, up to the limit of gathered

nodes (depends on size of neighbor table)
• If there is more than one node in a given network, chose the one that is highest up the tree with both

capacity and joining enabled. Each router has by default the capacity for 6 router children and 14
end device children

• Choose the first node that meets the above criteria for a parent and request association

These algorithms can be modified by the application, but it takes good knowledge of C programming. The
algorithms are in the file AppStackImpl.c, and use the following functions for channel, PAN and parent
selection:
void SelectLogicalChannel
(

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 6-15

 const nwkMessage_t *pMsg, /* IN – energy detect scan confirm */
 uint8_t* pScanChannels,/* IN - list of channels obtained */
uint8_t* pSelectedLogicalChannel /* IN/OUT- To be updated after

 finding least number of Nwks */
);
void SelectPanId
(
 const nwkMessage_t *pMsg, /* IN -active scan confirm */
 uint8_t selectedLogicalChannel, /* IN - Channel */
 uint8_t* pPanId/* IN/OUT - Pointer to the PanId */
);
index_t SearchForSuitableParentToJoin (void);

ZigBee Device Objects

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

6-16 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-1

Chapter 7
ZigBee Device Profile
The ZigBee Device Profile (ZDP), found within ZDO, describes how ZDO implements features such as
service discovery and device discovery, end device bind and unbind, and binding table management.
Within ZDP, clusters and device descriptions define the supported ZigBee device capabilities.

The ZDO profile resides on endpoint zero, while all other application endpoints are assigned endpoints 1
through 240.

ZDP offers service primitives for device and service discovery, binding, and network management for the
client and server activities.

This section includes all information and service requests. Since BeeStack automatically generates the
ZDP response, if any, they are not described here. For more information, see the ZigBee Specification,
revision 13, for more information.

7.1 Application Support Layer
BeeStack augments the communication capabilities of ZDO with features available from the BeeStack
application Support layer (ASL). While not a true layer, the ASL generates commands in a form that ZDP
can efficiently process. This BeeStack element serves as a support layer for the common user interface for
applications, including ZCL and ZDO, for example.

ASL uses the SAP handlers to send commands to ZDP. For example, the ASL_NWKAddr_req is sent to
the ZDP for processing (see NWK_addr_req). For more information about ASL functions, see Chapter 5,
“Application Support Sub-layer”.

Every ZDP function may be enabled or disabled through BeeKit properties or by enabling or disabling the
option in BeeStackConfiguration.h. If BeeKit is used to adjust the property, the entire project does not
need to be exported: a simple export properties will suffice. If modifying the property in the source code,
set it to TRUE to enable the command, and FALSE to disable the command.

For example, to enable NWK_addr_req in BeeStackConfiguration.h, use:
#define gNWK_addr_req_d TRUE

Requests and responses are enabled or disabled separately. In the ZigBee specification, responses can be
mandatory while the request is optional. By separating the requests and responses, the developer can
choose which commands are appropriate for a given application, saving code space by disabling those
which are not required.

When an option is disabled, the ASL request function is stubbed via a C macro. This allows the C code to
continue to compile without error when enabling and disabling various options, but be aware that the ASL
code for that request no longer functions. For example, if an application has disabled gNWK_addr_req_d,
but calls on ASL_NWK_addr_req(), as shown in the code below:

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-2 Freescale Semiconductor

…
 (void)ASL_NWK_addr_req(NULL, aDestAddress, aIeeeAddr, 0, 0);
…

The actual code will be nothing, because the C macro will be defined as an empty macro:
#define ASL_NWK_addr_req \ (pSequenceNumber,aDestAddress,aIeeeAddr,requestType,startIndex)

NOTE
The ASL in BeeStack should not be confused with ZigBee’s application
support sub-layer (APS).

7.2 Device and Service Discovery
The distributed operations of device and service discovery allow individual devices or designated
discovery cache devices to respond to discovery requests.

The field, device address of interest, enables responses from either the device itself or a discovery cache
device. When both the discovery cache device and the device address of interest respond, the response
from the device address of interest takes precedence.

7.2.1 Device Discovery
Device discovery enables a device to determine the identity of other devices on the personal area network
(PAN). Device discovery supports both 64-bit IEEE addresses and 16-bit network addresses, and it uses
broadcast or unicast addressing.

With a broadcast-addressed discovery request, all devices on the network respond according to the logical
device type and match criteria.

• ZigBee end devices (ZED) respond with address only
• A ZigBee coordinator (ZC) or ZigBee router (ZR) with associated devices responds with additional

information: Their address is the first entry, and it may be followed, depending on the type of
request, by the addresses of their associated devices. The responding devices use APS
acknowledged service on the unicast response

When unicast addressed, only the specified device responds. A ZED responds with its address only, while
a ZC or ZR responds with its own address and the addresses of all associated child devices. The inclusion
of the associated child devices allows the requester to determine the underlying network topology for the
specified device.

7.2.2 Service Discovery
Service discovery enables a device to determine services offered by other devices on the PAN.

With broadcast address service discovery, only the individual device or primary discovery cache responds
with the requested criteria match (due to the volume of information that could be returned if every network
node responded). The primary discovery cache responds only if it contains cached discovery information
for the NWK address of interest. Also, the responding device responds with unicast APS-acknowledged
service.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-3

With unicast addressed service discovery, only the specified device responds. A ZC or ZR must cache the
Service Discovery information for sleeping associated devices and respond on their behalf.

This chapter describes the following service discovery commands:
• Active End Point
• Match Simple Descriptor
• Simple Descriptor
• Node Descriptor
• Power Descriptor
• Complex Descriptor
• User Descriptor

7.3 Primary Discovery Cache Device Operation
The node descriptor both configures and advertises a device as a primary discovery cache device. This
primary discovery cache device operates as a state machine with respect to clients utilizing its cache
services.

The primary discovery cache device has the following states:
• Undiscovered
• Discovered
• Registered
• Unregistered

If undiscovered, the primary discovery cache device uses a radius-limited broadcast, the discovery register
request, to all RxOnWhenIdle devices. It attempts to locate a primary discovery cache device within the
radius supplied in the request.

When discovered, the client unicasts a request to the discovery cache device, along with the sizes of the
discovery cache information it seeks to store. The discovery cache device responds with a SUCCESS or
TABLE_FULL.

A registered client is one that has received a SUCCESS status response from the discovery cache device
from a previous request. The client then uploads the discovery information using the node, power, active
endpoint, and simple descriptor store requests. This enables the primary discovery cache device to fully
respond to discovery requests on the client’s behalf.

Any client or device can remain unregistered by using the remove node cache request. This removes the
device from the primary discovery cache device.

NOTE
When the device holds its own discovery cache, the device then responds to
identify itself as the repository of discovery information.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-4 Freescale Semiconductor

7.4 Binding Services
As described in , binding creates logical links between application device endpoints to allow them to work
together to perform specific tasks. Binding maintains information on each logical link in a binding table.
Each device in the network keeps its own binding table, although the ZC acts as a broker when end device
bind is used.

A primitive initiates a binding operation on a device that supports a binding table. ZDO, the next higher
layer, generates this primitive which it issues to the APS sub-layer. This is an in-memory association only
with no over-the-air behavior.

Binding is unidirectional between devices. That is, the receiving device sends a response if needed, but
issues no binding requests itself. For example, a switch sends a binding request to a light; the light may
respond, however, the light sends no binding request on its own.

7.5 ZDP Functions and Macros
ZDP, similar to any ZigBee profile, operates by defining device descriptions and clusters. The device
descriptions and clusters in ZDP, however, unlike application-specific profiles, define capabilities
supported in all ZigBee devices.

The functions and macros in this section describe some of the key activities required to establish device
communication using BeeStack.

7.5.1 ZDP Register Callback
BeeStack uses the register callback messaging function Zdp_AppRegisterCallBack() to register which
function will receive ZDO state change information. This does not affect data indications or confirms.

The applications which use ASL (Application Support Library), are set up to receive ZDO state change
information in the function ASL_ZdoCallBack() found in file ASL_UserInterface.c. If registered, ZDO
informs the application when the node has formed or joined a network, changed its permit join status and
the like. See ZDO_GetState() for more information.

Primitive
void ZDP_AppRegisterCallBack (ZDPCallBack_t pZdpAppCallBackPtr);

Parameters
• pointer to the response function

7.5.2 ZDP NLME Synchronization Request
Use this function to manually poll a parent for data from a ZigBee End Device (ZED). This is used in low
power modes, so the device can sleep for long periods, then poll the parent when it wakes up. This is used
automatically by applications using ASL.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-5

Primitive
void ASL_Nlme_Sync_req(bool_t track);

Parameters

The track parameter is ignored and should be set to FALSE.

7.6 Device and Service Discovery – Client Services
The commands that follow are unicast or broadcast addressed depending on their intent. A request for a
device address is broadcast while the requester searches. Devices will unicast the response, since only the
requester needs the information. All client side services are optional.

Table 7-1. Device and Discovery Commands

Client Service Cluster ID

ASL_NWK_addr_req 0x0000

ASL_IEEE_addr_req 0x0001

ASL_Node_Desc_req 0x0002

ASL_Power_Desc_req 0x0003

ASL_Simple_Desc_req 0x0004

ASL_Active_EP_req 0x0005

APP_ZDP_MatchDescriptor 0x0006

ASL_Complex_Desc_req 0x0010

ASL_User_Desc_req 0x0011

ASL_Discovery_Cache_req 0x0012

ASL System_Server_Discovery_req 0x0015

ASL_Discovery_store_req 0x0016

ASL_End_Device_annce 0x0013

ASL_User_Desc_set 0x0014

ASL_Discovery_store_req 0x0016

ASL_Node_Descr_store_req 0x0017

ALS_Power_Des_store_req 0x0018

ASL_Active_EP_store_req 0x0019

ASL_Remove_node_cache_req 0x001b

ASL_Find_node_cache_req 0x001c

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-6 Freescale Semiconductor

7.6.1 Network Address Request
A local device generates the ASL_NWK_add_req when seeking the 16-bit address of a remote device
based on a known IEEE address. The local device broadcasts the address request to all devices in
RxOnWhenIdle state.

This function generates a ZDP NWK_addr_req and passes it to the ZDO layer through the
APP_ZDP_SapHandler function.

Prototype
void ASL_NWK_addr_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbIeeeAddr_t
aIeeeAddr, uint8_t requestType, index_t startIndex);

ZDP Returns
• Device discards the request and does not generate a response if no match found.
• Remote device generates a response from the request type if match between the contained IEEE

address and its own IEEE address (or one held in the discovery cache) found.

7.6.2 IEEE Address Request Command
A device that generates the ASL_IEEE_addr_req requests the IEEE address and compares that address to
its local IEEE address or any IEEE address in its local discovery cache.

Prototype
void ASL_IEEE_addr_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbNwkAddr_t
aNwkAddrOfInterest, uint8_t requestType, index_t startIndex);

ZDP Returns
• Device discards the request and does not generate a response if no match found.
• Remote device generates a response from the request type if match between the contained IEEE

address and its own IEEE address (or one held in the discovery cache) found.

7.6.3 Node Descriptor Request
The command ASL_Node_Desc_req permits an enquiring device to request the node descriptor from the
specified device.

Addressed

Unicast

Prototype
void ASL_Node_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-7

Returns
• Node descriptor

7.6.4 Power Descriptor Request
The command, ASL_Power_Desc_req, permits an enquiring device to return the power descriptor from
the specified device.

Addressed

Unicast

Prototype
void ASL_Power_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZDP Returns

Power descriptor

7.6.5 Simple Descriptor Request
This ASL_Simple_Desc_req command returns the simple descriptor for a supplied endpoint to an
enquiring device.

Addressed

Unicast

Prototype
void ASL_Simple_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbEndPoint_t
endPoint);

ZDP Returns

Simple descriptor

7.6.6 Active Endpoint Request
The ASL_Active_EP_req command requests information about active endpoints. An active endpoint is an
endpoint with an application supporting a single profile, described by a simple descriptor.

Addressed

Broadcast or Unicast

Prototype
void ASL_Active_EP_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-8 Freescale Semiconductor

ZDP Returns

Simple descriptor for active endpoint

7.6.7 Match Descriptor Request
The match simple descriptor command, APP_ZDP_MatchDescriptor, allows devices to supply
information and ask for information in return.

Addressed

Broadcast or unicast to all RxOnWhenIdle devices

Prototype
void APP_ZDP_MatchDescriptor(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbSimpleDescriptor_t *pSimpleDescriptor);

ZDP Returns
• Profile ID
• Optionally lists of input and/or output cluster IDs
• Identity of an endpoint on the destination device matching the supplied criteria
• In the case of broadcast requests, the responding device uses APS-acknowledged service on the

unicast response

7.6.8 Complex Descriptor Request
The complex descriptor is an optional command, unicast-addressed from the device seeking the complex
descriptor from a specified device, using the command ASL_Complex_Desc_req.

Prototype
void ASL_Complex_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

7.6.9 User Descriptor Request
A remote device receives the ASL_User_Desc_req, responding with a unicast simple descriptor to the
originator of the command.

Addressed

Unicast to originator

Prototype
void ASL_User_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-9

ZDP Returns
• SUCCESS status notification with the requested user descriptor in the UserDescriptor field
• Error otherwise, with no UserDescriptor field

7.6.10 Discovery Cache Request
The command ASL_Discovery_Cache_req asks for Remote Devices which are Primary Discovery Cache
devices (as designated in their Node Descriptors). Devices not designated as primary discovery cache
devices should not respond to the cache discovery command.

Prototype
void ASL_Discovery_Cache_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aNwkAddrOfInterest, zbIeeeAddr_t aIEEEAddrOfInterest);

ZDP Returns
• SUCCESS, and the local device uses the Discovery_Store_req (targeted to the remote device

supplying the response) to determine if there is sufficient discovery cache storage available.
• The Discovery Cache Request is broadcast at the default broadcast radius (2 * nwkMaxDepth,

which defaults to 10 in stack profile 0x01).

7.6.11 End Device Announce
End-Device-Announce request is used to indicate that a node has moved to a new NWK short address
(happens automatically by BeeStack) or now has different MAC capabilities (for example, an end-device
which has been plugged in can now indicate it is mains powered with RxOnIdle=TRUE). This request
should be broadcast to the entire network so any node which communicates with this node can update its
internal information.

Prototype
void ASL_End_Device_annce(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbNwkAddr_t
aNwkAddress, zbIeeeAddr_t aIeeeAddress, macCapabilityInfo_t capability);

When the ZC receives the End_Device_annce message, it checks the supplied address for a match using
binding tables holding 64-bit IEEE addresses for devices within the PAN.

After checking the Binding Table and Trust Center tables and finding a match, the ZC updates its AIB
address map entries to reflect the updated 16 bit NWK address contained in the End_Device_annce.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-10 Freescale Semiconductor

7.6.12 User Descriptor Set Request
This optional user descriptor command, ASL_User_Desc_set, permits an enquiring device to get the User
Descriptor from the specified device. It is always unicast addressed.

Prototype
void ASL_User_Desc_set(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbSize_t
length, zbUserDescriptor_t aUserDescription);

7.6.13 Server Discovery Request
ASL_System_Server_Discovery_req is generated from a Local Device seeking the location of a particular
system server or servers as indicated by the ServerMask parameter. The destination addressing on this
request is broadcast to all RxOnWhenIdle devices.

Prototype
void ASL_System_Server_Discovery_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbServerMask_t aServerMask);

When a remote device receives this request, it compares the ServerMask parameter to the server mask field
in its own Node descriptor.

ZDP Returns
• If any matching bits are found, the remote device sends a System_Server_Discovery_rsp back to

the originator using unicast transmission (with acknowledgement request) indicating the matching
bits.

• If no matching bits are found, no action is taken.

7.6.14 Discovery Cache Storage Request
The Discovery_store_req allows a device on the network to request storage of its discovery cache
information on a Primary Discovery Cache device. This request includes the amount of storage space the
local device requires, and stores information for replacing a device or a sleeping device.

Prototype
void ASL_Discovery_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbDiscoveryStoreRequest_t *pDiscoveryStore);

Returns
• gZdoNotSupported_c, if the remote device is not a Primary Discovery Cache device.
• Determines if it has storage for the requested discovery cache size, if the remote device is a primary

discovery cache device, by summing the sizes of the these fields:
— NWKAddr
— IEEEAddr

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-11

— NodeDescSize
— PowerDescSize
— ActiveEPSize
— sizes from the SimpleDescSizeList

• gZbSuccess_c, if sufficient space exists, and the remote device reserves the storage space
requested.

• gZdoTableFull_c, if there is no available space.

Additionally, the Remote Device replaces the previous entry and discovery cache information with the
newly registered data if the local device IEEEAddr matches, but the NWKAddr differs from, a previously
stored entry.

7.6.15 Store Node Descriptor on Primary Cache Device
A device requests the storage of its node description on a primary discovery cache device using the
ASL_Node_Descr_store_req. The request includes the information, in this case, the node descriptor,
that the local device is attempting to place in cache.

Prototype
void ASL_Node_Desc_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNodeDescriptor_t *pNodeDescriptor);

Returns
• gZdoNotSupported_c, if the remote device is not a primary discovery cache device.
• gZbSuccess_c, if the NWKAddr and IEEEAddr in the request referred to addresses already held in

the Primary Discovery Cache, the descriptor in this request shall overwrite the previously held
entry.

• gZdoInvalidRequestType_c, if ASL_Discovery_store_req() was not successfully called for this
node.

7.6.16 Store Power Descriptor Request
Similarly, the function call ASL_Power_Desc_store_req seeks to store the local device’s power
information in a remote device’s primary discovery cache.

Prototype
void ASL_Power_Desc_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbPowerDescriptor_t *pPowerDescriptor);

Returns
• gZdoNotSupported_c, if the remote device is not a primary discovery cache device
• gZbSuccess_c, if worked

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-12 Freescale Semiconductor

• gZdoInvalidRequestType_c, if ASL_Discovery_store_req() was not successfully called for this
node

7.6.17 Active Endpoint List Storage Request
ASL_Active_EP_store_req enables devices in the network to request storage of their list of active
endpoints to a primary discovery cache device that has previously received a SUCCESS status from a
Discovery_store_req to the same Primary Discovery Cache device.

Included in this request is the count of Active Endpoints the Local Device wishes to cache and the endpoint
list itself.

Prototype
void ASL_Active_EP_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbCounter_t activeEPcount, zbEndPoint_t *pActiveEPList);

Returns
• gZdoNotSupported_c, if it is not a Primary Discovery Cache device.
• gZbSuccess_c, if storage completed.
• gZdoInvalidRequestType_c, if ASL_Discovery_store_req() was not successfully called for this

node.
• If the request returned a status Success and both the NWKAddr and IEEEAddr are already in the

primary discovery cache, the remote device replaces the previous entry and discovery cache
information with the newly registered data.

7.6.18 Simple Descriptor Storage Request
A device requests the storage of its simple descriptor on a primary discovery cache device using the
ASL_Simple_Descr_store_req. This conditional request must come from a node that has previously
received a SUCCESS status from an earlier discovery storage request to the same primary discovery cache
device.

Prototype
void ASL_Simple_Desc_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNodeDescriptor_t *pNodeDescriptor);

Returns
• NOT_SUPPORTED, if the remote device is not a primary discovery cache device.
• SUCCESS, if the IEEEAddr in the request referred to addresses already held in the primary

discovery cache; the descriptor in this request overwrites a previously held entry.
• NOT_PERMITTED, if it has not previously allowed the request.
• INSUFFICIENT_SPACE, if no space to store the simple descriptor.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-13

7.6.19 Remove Node Cache Request
With ASL_Remove_node_cache_req, ZigBee devices on the network request that a Primary Discovery
Cache device remove the discovery cache information for a specified ZED.

This request undoes a previously successful Discovery_store_req and additionally removes any cache
information stored on behalf of the specified ZED on the Primary Discovery Cache device.

Prototype
void ASL_Remove_node_cache_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aNwkAddress, zbIeeeAddr_t aIeeeAddress);

ZDP Returns
• NOT_SUPPORTED, if not a primary discovery cache device.
• NOT_PERMITTED, if a prior response with anything but SUCCESS was issued.
• SUCCESS, if primary discovery cache device, and overwrites all cached discovery information for

the device of interest.

7.6.20 Find Node Cache Request
The ASL_Find_node_cache_req() allows a ZigBee node to find which node in the network is caching
information for the requested node. Both the IEEE and NWK address must match the entry to be found.
The aDestAddress should be set to gaBroadcastRxOnIdle to find the proper cache.

Prototype
void ASL_Find_node_cache_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aNwkAddress, zbIeeeAddr_t aIeeeAddress);

ZDP Returns
• gZbSuccess_c if found, and the return address in the response function as registered by

Zdp_AppRegisterCallBack().
• No response will be received if there is no cache in the network that supports the node in question.

7.7 Binding Management Service Commands
The requests to bind to a device, as well as store, back up, or recover binding table entries, are unicast to
a destination device. The list in Table 7-2 includes the unicast-addressed commands and cluster IDs for the
commands detailed in the sections that follow.

Many commands in this section use an "index" as one of the parameters. Sending or retrieving tables, the
size of the table may exceed the maximum size of a ZigBee packet. In this case, a partial list is sent over
the air. The index is used to indicate where in the list this partial list begins. For example, if
ASL_Backup_Bind_Table_req(), is issued, the first time it would be called with a StartIndex of 0 . If only
6 binding table entries can fit in the payload, then the next time it is called, the StartIndex would be set to
6, and so on through the table. The number of entries in the partial list that may be sent over the air depends

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-14 Freescale Semiconductor

on the size of the structure in question. When receiving entries from a table, BeeStack will automatically
calculate the proper size. When the application is transmitting a table, the maximum size can be calculated
by using the maximum payload of 80 bytes, subtracting the header for that payload, and dividing by the
size of each entry.

7.7.1 End Device Bind Request
This command binds two nodes together using a button press or some similar user interface mechanism.
This command is always issued to the ZigBee coordinator (ZC), so the aDestAddress must always be {
0x00, 0x00 }. The ZC then determines if the two nodes match (for example, a light and a switch).

If the two nodes match, then they are bound together. A match is determined by comparing the input cluster
of one node with the output cluster of the other node. Both nodes are checked for a match. If an input
cluster on one side (for example, the OnOffCluster 0x0006) matches the output cluster on the other side
(for example, 0x0006), then they are considered a match. The side with the output cluster receives the
following binding commands.

NOTE
Both sides may match on the output cluster, in which case both sides would
receive the binding commands.

Bindings are actually stored in the nodes themselves (source binding), not in the ZC.

First an UnBindRequest() is issued by the ZC to the matching node, then, if that is successful, a
BindRequest(). The reason for this is that EndDeviceBind is a toggle. That is, if the nodes are already
bound, then it will unbind. If the nodes are not bound, then it will bind.

Prototype
void APP_ZDP_EndDeviceBindRequest(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbSimpleDescriptor_t *pSimpleDescriptor);

Table 7-2. Service Commands for Binding Management

Command Cluster ID

APP_ZDP_EndDeviceBindRequest 0x0020

APP_ZDP_BindRequest 0x0021

APP_ZDP_UnbindRequest 0x0022

ASL_Bind_Register_req 0x0023

ASL_Replace_Device_req 0x0024

ASL_Store_Bkup_Bind_Entry_req 0x0025

ASL_Remove_Bkup_Bind_Entry_req 0x0026

ASL_Backup_Bind_Table_req 0x0027

ASL_Recover_Bind_Table_req 0x0028

ASL_Backup_Source_Bind_req 0x0029

ASL_Recover_Source_Bind_req 0x002a

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-15

ZDP Returns
• gZdoNoMatch_c, if the two nodes do not match.
• gZdoInvalidEndPoint_c, if the source endpoint is out of range (valid range is 1-240).
• gEndDevBindTimeOut_c, if a second node doesn't request EndDeviceBind
• gZbSuccess_c worked. Devices are either bound or unbound (depending on toggle).

7.7.2 Bind Request
A local device seeking to add a binding table entry generates the ZDP_BindRequest, using the contained
source and destination addresses as parameters. The unicast destination address must be that of the Primary
binding table cache or the SrcAddress.

Prototype
void APP_ZDP_BindRequest(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbMsgId_t
BindUnbind, zbBindRequest_t *pBindUnBindRequest);

ZDP Returns
• NOT_SUPPORTED, if the SrcAddress is specified but binding manager unsupported on the

remote device.
• SUCCESS, and SrcAddress added.

7.7.3 Unbind Request
A local device seeking to remove a binding table entry generates the ZDP_UnbindRequest, using the
contained source and destination addresses as parameters. The unicast destination address must be that of
the primary binding table cache or the SrcAddress.

Prototype
void APP_ZDP_UnbindRequest(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbMsgId_t
Unbind, zbUnbindRequest_t *pUnBindRequest);

ZDP Returns
• NOT_SUPPORTED, if the SrcAddress is specified but the binding manager is unsupported on that

remote device.
• NO_ENTRY, if a binding table entry does not exist for the SrvAddress, SrcEndp, ClusterID,

DstAddress, and DstEndp contained as parameters.
• SUCCESS, otherwise, and the remote device, which is either a primary binding table cache or the

SrcAddess, removes the binding table entry based on the Unbind_req parameters.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-16 Freescale Semiconductor

7.7.4 Local Bind Register Request
A local device generates the ASL_Bind_Register_req to notify a primary binding table cache device that
the local device will hold its own binding table entries. The local device uses the unicast destination
address to the primary binding cache device.

Prototype
void ASL_Bind_Register_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbIeeeAddr_t aNodeAddress);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a primary binding table cache.
• SUCCESS, and adds the NodeAddress given by the parameter to its table of other source devices

that have chosen to store their own binding table.
• TABLE_FULL if the request fails.

NOTE
If an entry for the NodeAddress already exists in the table of source devices,
the behavior will be the same as if it had been newly added. To avoid
synchronization problems, the source device should clear its source binding
table before issuing this ASL_Bind_Register_req command.

When a SUCCESS status message results, any existing bind entries from the binding table with source
address NodeAddress are sent to the requesting device for inclusion in its source bind table. See
Bind_Register_rsp for additional information on this response.

7.7.5 Replace Device Request
ASL_Replace_Device_req requests that a primary binding table cache device change, as specified, all
binding table entries that match OldAddress and OldEndpoint.

NOTE
OldEndpoint = 0 has special meaning and signifies that only the address
needs to be matched. In this case, the endpoint in the binding table is not
changed and NewEndpoint is ignored.

Processing the ASL_Replace_Device command changes all binding table entries for which the source
address is the same as OldAddress. If OldEndpoint is non-zero, this additionally changes to NewEndpoint
the binding table entry to for which the source endpoint is the same as OldEndpoint.

It changes all binding table entries for which the destination address is the same as OldAddress (and if
OldEndpoint is non-zero) and the destination endpoint the same as OldEndpoint. The destination
addressing mode for this request is unicast.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-17

Prototype
void ASL_Replace_Device_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aOldAddress, zbEndPoint_t oldEndPoint, zbNwkAddr_t aNewAddress, zbEndPoint_t
newEndPoint);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a primary binding table cache.
• The primary binding table cache confirms that its OldAddress is non-zero. It then searches its

binding table for entries of source addresses and entries, or destination addresses and source
addresses, set the same as OldAddress and OldEndpoint.

• In the case that OldEndpoint is zero, the primary binding table cache searches its binding table for
entries whose source address or destination address match OldAddress. It changes the address to
NewAddress, leaving the endpoint value unchanged and ignoring NewEndpoint.

• SUCCESS, then it changes these entries to have NewAddress and NewEndpoint.

For more information on this command, refer to ZigBee Specification revision 13, December 2006.

7.7.6 Store Backup Bind Entry Request
A local primary binding table cache generates the Store_Bkup_Bind_Entry_req and, by sending to a
remote backup binding table cache device, requests backup storage of the entry. It generates this request
whenever a new binding table entry has been created by the primary binding table cache. The destination
addressing mode for this request is unicast, and this affects one entry only.

Prototype
void ASL_Store_Bkup_Bind_Entry_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbStoreBkupBindEntryRequest_t *pStoreBkupEntry);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a backup binding table.
• SUCCESS, if the contents of the Store_Bkup_Bind_Entry parameters match an existing entry in

the binding table cache.
• SUCCESS when the backup binding table simply adds the binding entry to its binding table.
• TABLE_FULL, if there is no room to store the information.

If it is the backup binding table cache, it maintains the identity of the primary binding table cache from
previous discovery.

7.7.7 Remove Entry from Backup Storage
A local primary binding table cache generates the ASL_Remove_Bkup_Bind_Entry_req request and
issues the request to a remote backup binding table cache device to remove the entry from backup storage.
ZDP generates this request whenever a binding table entry has been unbound by the primary binding table
cache. The destination addressing mode for this request is unicast, and it affects only one entry.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-18 Freescale Semiconductor

Prototype
void ASL_Remove_Bkup_Bind_Entry_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbRemoveBackupBindEntryRequest_t *pRemoveBkupEntry);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as the primary binding table

cache.
• SUCCESS, keeping the identity of the primary binding table cache from previous discovery.
• NO_ENTRY, if no entry is found.

7.7.8 Backup Binding Table Request
A local primary binding table cache issues the Backup_Bind_Table_req request to the remote backup
binding table cache device, seeking backup storage of its entire binding table. The destination addressing
mode for this request is unicast.

Prototype
void ASL_Backup_Bind_Table_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbBackupBindTableRequest_t *pBackupBindTable);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.
• TABLE_FULL, if this exceeds its table size; it then fills in as many entries as possible.
• SUCCESS, if all other conditions are met, and the table is effectively truncated at the end of the

last entry written by the request.
• Since it is a backup binding table cache, it maintains the identity of the primary binding table cache

from previous discovery. Otherwise, the backup binding table cache overwrites its binding table
entries, starting with StartIndex and continuing for BindingTableListCount entries.

• Unless it returns TABLE_FULL, the response returns the new size of the table (equal to StartIndex
+ BindingTableListCount).

7.7.9 Recover Binding Table Request
The Recover_Bind_Table_req is generated from a local primary binding table cache and sent to a remote
backup binding table cache device when it wants a complete restore of the binding table. The destination
addressing mode for this request is unicast.

Prototype
void ASL_Recover_Bind_Table_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
index_t index);

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-19

ZDP Returns
• NOT_SUPPORTED if the remote device is not the backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.
• SUCCESS, and the backup binding table cache creates a list of binding table entries from its

backup beginning with StartIndex and fits as many entries as possible into a
Recover_Bind_Table_rsp command.

7.7.10 Source Binding Table Backup Request
The local primary binding table cache generates a Backup_Source_Bind_req to request backup storage of
its entire source table of a remote backup binding table cache device. The destination addressing mode for
this request is unicast, and it includes the IEEE address.

Prototype
void ASL_Backup_Source_Bind_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbBackupSourceBindRequest_t *pBkupSourceBindTable);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not the backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.
• TABLE_FULL, if this exceeds its table size.
• SUCCESS if able to complete the request, and the command truncates the backup table to a number

of entries equal to its maximum size or SourceTableEntries, whichever is smaller.
• The backup binding table cache otherwise overwrites the source entries in its backup source table

starting with StartIndex and continuing through SourceTableListCount entries.

7.7.11 Recover Source Binding Table Request
A local primary binding table cache generates the Recover_Source_Bind_req to send to the remote backup
binding table cache device when it wants a complete restore of the source bind table. The destination
addressing mode for this request is unicast.

Prototype
void ASL_Recover_Source_Bind_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
index_t index);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not the backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-20 Freescale Semiconductor

• SUCCESS, after it creates a list of source bind table entries from its backup beginning with
StartIndex and fits as many entries as possible into a Recover_Source_Bind_rsp command.

7.8 Network Management Services
The network discovery requests occur when an end device, node, or application seeks to join or form a
network. These services use both client and server components, since the client (end device) makes the
request of a device, and the application object on the server sends a response.

7.8.1 Management Network Discovery Request
A local device requests that a remote device scan and then report back any networks in the vicinity of the
initiating device using the command ASL_Mgmt_NWK_Disc_req. The unicast addressed request includes
several parameters, including channels, duration, and network address.

Prototype
void ASL_Mgmt_NWK_Disc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbChannels_t aScanChannel, zbCounter_t scanDuration, index_t startIndex);

ZDP Returns

Nothing

7.8.2 Management LQI Request
A local device looking to obtain a neighbor list for a remote device issues the ASL_Mgmt_Lqi_req, along
with the link quality indicator (LQI) values for each neighbor. This command uses unicast addressing, and
the destination address can only be a ZC or ZR. ZDP responds with the ASL_Mgmt_Lqi_rsp command.

Prototype
void ASL_Mgmt_Lqi_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t index);

ZDP Returns

Nothing

The remote device (ZR or ZC) retrieves the entries of the neighbor table and associated LQI values using
the NLME-GET.request primitive (for the nwkNeighborTable attribute) and with the Mgmt_Lqi_rsp
command reports the resulting neighbor table (obtained via the NLME-GET.confirm primitive).

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-21

7.8.3 Routing Discovery Management Request
A local device attempts to retrieve the contents of the routing table from a remote device with this
ASL_Mgmt_Rtg_req command. The unicast destination address must be that of the ZR or ZC.

Prototype
void ASL_Mgmt_Rtg_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t index);

ZDP Returns

Nothing

The routing table is then acquired via the Mgmt_Rtg_rsp command using the NLME-GET.confirm
primitive.

7.8.4 Management Bind Request
A Local Device seeking the contents of the binding table from the remote device generates a
Mgmt_Bind_req command. The unicast destination address is a primary binding table cache or source
device holding its own binding table. Upon receipt, a remote device (ZC or ZR) obtains the binding table
entries from the APS sub-layer via the APSMEGET.request primitive (for the apsBindingTable attribute).

Prototype
void ASL_Mgmt_Bind_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t index);

ZDP Returns

Nothing

7.8.5 Management Leave Request
A local device requests that a remote device leave the network using the Mgmt_Leave_req command.
Generated by a management application, the Mgmt_Leave_req sends the request to a remote device. The
remote device executes the request using the NLME-LEAVE.request using the parameters supplied in the
Mgmt_Leave_req. The local device is notified of the results of its attempt to cause a remote device to leave
the network.

Prototype
void ASL_Mgmt_Leave_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbIeeeAddr_t
aDeviceAddres, zbMgmtOptions_t mgmtOptions);

ZDP Returns

Nothing

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-22 Freescale Semiconductor

7.8.6 Management Permit Joining
A local device uses the command Mgmt_Permit_Joining_req to request that a remote device (or devices)
permit or disallow association. This sets a flag for every device to true or false.

Generated by a management application or commissioning tool on the local device, the
NLME-PERMIT-JOINING.request executes using the PermitDuration parameter supplied by
Mgmt_Permit_Joining_req. This request affects the trust center authentication if the remote device is the
Trust Center and TC_Significance is set to 1. Addressing may be unicast or broadcast to all
RxOnWhenIdle devices.

Upon receipt, the remote device(s) shall issue the NLME-PERMITJOINING. request primitive using the
PermitDuration parameter supplied with the Mgmt_Permit_Joining_req command.

Prototype
void ASL_Mgmt_Permit_Joining_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbCounter_t permitDuration, uint8_t TC_Significance);

ZDP Returns

Nothing

7.8.7 Management Network Update Request
A local device requests that a remote device update its network information or request the remote node to
perform and energy scan or move to a different channel using the Mgmt_nwk_update_req command.
Generated by a management application, the Mgmt_nwk_req sends the request to a remote device. The
remote device executes the request using the parameters supplied in the Mgmt_nwk_update_req. The local
device is notified of the results when a Mgmt_nwk_update_Notify is received.

Prototype
void ASL_Mgmt_NWK_Update_req(aDestAddress,aChannelList,iScanDuration,iScanCount)

ZDP Returns

Nothing

7.8.8 Management Network Update Notify
If a local device has received an Mgmt_nwk_update_req, the local device can notify the remote device of
of the results by sending a Mgmt_nwk_update_Notify

Prototype
voidASL_Mgmt_NWK_Update_Notify(aDestAddress, aScannedChannels, iTotalTransmissions, \
 iTransmissionFailures, iScannedChannelListCount,paEnergyVslues, status)

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 7-23

ZDP Returns

Nothing

7.8.9 Management Cache
ZigBee devices in a network obtain the list of ZEDs registered with a primary discovery cache device using
the Mgmt_Cache_req command. This is a unicast address to the destination primary discovery cache
device, which first determines if it is a primary discovery cache and if it supports this optional request
primitive.

Prototype
void ASL_Mgmt_Cache_Req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t
index);

ZDP Returns

Nothing

7.9 ZDO Layer Status Values
Table 7-3 provides status responses for the commands listed above in this section.

Table 7-3. ZDO Status Values

Macro ID Description

gZbSuccess_c 0x00 Indicates request succeeded

gZdoInvalidRequestType_c 0x80 Supplied request type was invalid

gZdoDeviceNotFound_c 0x81 Requested device did not exist on a device following a child descriptor request to a parent

gZdoInvalidEndPoint_c 0x82 Supplied endpoint was equal to 0x00 or between 0xf1 and 0xff

gZdoNotActive_c 0x83 Requested endpoint is not described by a simple descriptor

gZdoNotSupported_c 0x84 Requested optional feature is not supported on the target device

gZdoTimeOut_c 0x85 Requested operation timed out

gZdoNoMatch_c 0x86 End device bind request was unsuccessful due to failure to match any suitable clusters

gZdoNoEntry_c 0x88 Unbind request was unsuccessful due to ZC or source device not having an entry in its
binding table to unbind

gZdoNoDescriptor_c 0x89 Child descriptor was not available following a discovery request to a parent

gZdoInsufficientSpace_c 0x8a Device does not have storage space to support the requested operation

gZdoNotPermited_c 0x8b Device is not in the proper state to support the requested operation

gZdoTableFull 0x8c Device does not have table space to support the operation

gZdoNotAuthorized_c 0x8d Permission configuration table on the target indicates that the request is not authorized
from this device

ZigBee Device Profile

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

7-24 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 8-1

Chapter 8
Network Layer
The BeeStack network (NWK) layer handles the following duties:

• Joining and leaving a network
• Applying security to frames
• Routing frames to their intended destinations
• Discovering and maintaining routes between devices
• Discovering one-hop neighbors
• Storing pertinent neighbor information

For the ZC, the NWK layer specifically handles starting a new network when appropriate, as well as
assigning addresses to newly associated devices.

The NWK layer provides both correct operation of the IEEE 802.15.4-2003 MAC sub-layer and a suitable
service interface to the application layer. Two service entities interface with the application layer to
provide those necessary functionalities, the data service and the management service.

Figure 8-1. Network Layer Interfaces

The NWK layer data entity (NLDE) handles data transmission service through its associated service access
point, the NLDE-SAP.

A p p l i c a t i o n
O b j e c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t i o n
O b j e c t

1

A p p l i c a t i o n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t

(Z D O)

ZD
O

M
anagem

entP
lane

AP
SM

E-SAP

N L D E - S A P N L M E - S A P

N
LM

E-S
AP

M L M E - S A PM L D E - S A P

P h y s i c a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

A P S D E - S A P
E n d P o i n t

0
E n d p o i n t 1

A P S D E - S A P

P L M E - S A PP D - S A P

E n d p o i n t 2 4 0
A P S D E - S A P

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

8-2 Freescale Semiconductor

The (NLME) provides data management services through the NLME-SAP. The NLME utilizes the NLDE
for some of its management tasks. The NLME also maintains a database of managed objects known as the
network information base (NIB).

8.1 Channel and PAN Configuration
These sections describe the channel list and detail how the PAN is configured.

8.1.1 Channel Configuration
The default channel list defines which channels to scan when forming or joining a network.

As shown in Figure 8-2, the channel list is a bitmap, where each bit identifies a channel (for example bit
12 corresponds to channel 12). Any combination of channels can be included. Only channels 11-26 are
available to users.

Figure 8-2. Channel List Bitmap

8.1.1.1 Channel Default Value

Channel 25 serves as the default network channel value for all applications, although users may change
that information using BeeKit.

Macro
#define mDefaultValueOfChannel_c

Parameter
0x02000000

3 2 2 2 1 1 0 0 0
1 8 4 0 6 2 8 4 0

Channel

0000 0000 0000 0000 0000 1000 0000 0000 0x04000000 26
0000 0100 0000 0000 0000 0000 0000 0000 0x00000800 11
0000 0010 0000 0000 0000 0000 0000 0000 0x02000000 25
0000 0111 1111 1111 1111 1000 0000 0000 0x07fff800 All 11-26
0000 0000 1000 0000 0001 0000 0000 0000 0x00800000 23 and 12

Table 8-1. Hexadecimal Channel Values

Channel
Number Channel Value (Hex) 32-bit Value

11 0x0B 0x00000800

12 0x0C 0x00001000

13 0x0D 0x00002000

14 0x0E 0x00004000

15 0x0F 0x00008000

16 0x10 0x00010000

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 8-3

8.1.2 PAN ID
The personal area network (PAN) ID establishes a unique identifier used to form or join the network.
ZigBee PAN IDs range from 0 - 0x3fff (0x00,0x00-0xff,0x3f in the little-endian form that all values are
sent over the air).

When forming a network, the PAN ID 0xffff indicates random PAN ID selection. The ZC will generate a
PAN ID that does not match any PAN IDs it can locate on its chosen channel. When joining a network, a
node with an 0xFFFF PAN ID will join any network it finds that meet any other criteria the application or
initial configuration might require.

Macro
mDefaultValueOfPanId_c

Default
0xab, 0x1b

8.1.3 Beacon Notify
A device issues a beacon request every time it performs network discovery (during network forming and
joining). The beacon request goes out over the air to any device in range. Every ZC and ZR that hears the
beacon request must return a beacon response.

The MAC layer of the device receiving the beacon response passes the response to the NWK layer as a
beacon-notify indication.

17 0x11 0x00020000

18 0x12 0x00040000

19 0x13 0x00080000

20 0x14 0x00100000

21 0x15 0x00200000

22 0x16 0x00400000

23 0x17 0x00800000

24 0x18 0x01000000

25 0x19 0x02000000

26 0x1A 0x04000000

Table 8-1. Hexadecimal Channel Values (continued)

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

8-4 Freescale Semiconductor

8.1.3.1 Parse Beacon Notification
The function ParseBeaconNotifyIndication processes every beacon-notify indication received, with the
function exposed to the application so it can filter the beacons. This filtering allows the application to
choose the appropriate response to be included in the list to select a router. In the case of a ZC, the filtering
checks for PAN ID conflicts or selects a channel with the fewest active networks.

Essentially, the ParseBeaconNotifyIndication allows the device to ignore a beacon if there is a protocol
ID or stack profile conflict. This parse-beacon indicator also confirms end device or router capacity.
Additional filters come into play as the device processes the request. For example, a device may check to
see if there is space in the neighbor table to save information sent in the response. The following functions
provide further filtering for the receiving device.

8.1.3.2 Parent to Join
The function SearchForSuitableParentToJoin selects a potential parent to join from a list formed with the
responses sent by the devices that heard the beacon request.

8.1.3.3 Select PAN ID
The function SelectPanId chooses a PAN ID for the device seeking to form a network, when the upper layer
specifies NULL as PanId (0xFFFF). This selection is based on the extended PAN ID, the NWK PAN ID,
and the link quality, depth, and permit join flags.

8.1.3.4 Select Logical Channel
The MAC layer sends an active scan confirmation invoking the function SelectLogicalChannel. The ZC
selects a logical network, with the channel selection criteria set for first one with zero networks, or the one
containing the smallest number of PANs.

8.1.4 NWK Layer Interfaces
The macros in Table 8-2 use the given attributeId to call the relevant function.

Table 8-2. NWK Layer Functions and Attributes

Function Description

NlmeGetRequest(attributeId#) Get a simple attribute from the NIB (e.g., nwkShortAddress).

NlmeGetRequestTableEntry(attributeId,index) Get an entry from NIB table attribute (for example, address map)

NlmeSetRequest(attributeId, pValue) Set a simple attribute from the NIB (for example, nwkShortAddress).

NlmeSetRequestTableEntry(attributeId,index,pValue) Set an entry from an NIB table attribute (e.g., address map)

IsLocalDeviceTypeARouter() Returns true or false response (device is or is not a router)

IsLocalDeviceReceiverOnWhenIdle() Returns true or false response (true = radio always on even if idle)

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 8-5

8.1.5 NWK Layer Filters
These NWK layer filters allow putting in place limits to the networks a given device can hear.

8.1.5.1 Hear Short Address
This function checks for a specific address listed in the IcanHearYouTable.

Macro
bool_t CanIHearThisShortAddress(uint8_t *pSourceAddress);

Returns
• False, if gICanHearYouCounter is anything but 0 and the address given was not in the table
• True, otherwise

8.1.5.2 Set Table List
This macro sets the IcanHearYouTable.
Bool_t SetICanHearYouTable(uint8_t addressCounter, zbNwkAddr_t *pAddressList);

Returns
• False, if addressCounter is larger than the IcanHearYouTable.
• True, sets the device list in the table

8.1.5.3 Get Table List
This macro gets a pointer to the destination buffer where the table is going to be copied, along with the
size of destination buffer.

Macro
index_t GetICanHearYouTable(zbNwkAddr_t *pDstTable, index_t maxElementsInDstTable);

Returns

Number of table entries copied to destination buffer and the table list.

8.2 NWK Information Base
The NWK information base (NIB) contains all of the attributes used by the NWK layer when
communicating with adjacent layers.

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

8-6 Freescale Semiconductor

Table 8-3. NWK Information Base Attributes

Attribute ID Type Range Description Default

nwkPANId 0x80 16-bit
PAN ID

0x0000 - 0xffff macPANId 0xffff

nwkSequenceNumber 0x81 Integer 0x00 - 0xff Sequence number used to
identify outgoing frames

Random value
from within
range

nwkPassiveAckTimeout 0x82 Integer 0x0000 -
0x2710

Maximum time duration in
milliseconds allowed for parent
and all child devices to retransmit
a broadcast message (passive
ACK time-out)

Defined in the
stack profile

nwkMaxBroadcastRetries 0x83 Integer 0x00 - 0x5 Maximum number of retries
allowed after a broadcast
transmission failure

0x03

nwkMaxChildren 0x84 Integer 0x00 - 0xff The number of children a device
is allowed to have on its current
network

Defined in the
stack profile

nwkMaxDepth 0x85 Integer 0x00 - 0xff Depth a device can have:
maximum hops from ZC

Defined in stack
profile

nwkMaxRouter 0x86 Integer 0x01-0xff Max number of routers any one
device is allowed to have as
children; This value is
determined by the ZC for all
devices in the network

Defined in stack
profile

nwkNeighborTable 0x87 Set Variable Current set of neighbor table
entries in the device

Null set

nwkNetworkBroadcastDeliveryTimel 0x88 Integer (nwkPassiveAc
kTimeouT*

nwkBroadcastR
etries

0x00 – 0xff

Time duration in seconds that a
broadcast message needs to
encompass the entire network

nwkPassiveAck
Timeout *
nwkBroadcastR
etries

nwkReportConstantCost 0x89 Integer 0x00-0x01 If set to 0, the NWK layer
calculates link cost from all
neighbor nodes using LQI values
reported by the MAC layer; it
reports a constant value
otherwise

0x00

nwkRouteDiscoveryRetries
Permitted

0x8a Integer 0x00-x03 Number of retries allowed after
an unsuccessful route request

nwkcDiscovery
RetryLimit

nwkRouteTable 0x8b Set Variable Current set of routing table
entries in the device

Null set

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 8-7

nwkTimeStamp 0x8c Boolean TRUE or
FALSE

Flag to determine whether a time
stamp indication is provided on
incoming and outgoing packets.

TRUE: time indication provided
FALSE: no time indication
provided

FALSE

nwkTxTotal 0x8d Integer 0x0000 - 0xffff Count of unicast transmissions
made by the NWK layer on the
device

0x00

nwkSymLink 0x8e Boolean TRUE or
FALSE

TRUE: routes are considered to
be comprised of symmetric links.
FALSE: routes are not
considered to be comprised of
symmetric links.

FALSE

nwkCapabilityInformation 0x8f Bit
vector

N/A Device capability information
established at network joining
time

0x00

nwkAddrAlloc 0x90 Integer 0x00 - 0x02 0x00 = Use distributed address
allocation
0x01 = reserved
0x02 = use stochastic address
allocation

0x00

nwkUseTreeRouting 0x91 Boolean TRUE or
FALSE

TRUE: assume the ability to use
hierarchical routing.
FALSE: never use hierarchical
routing.

TRUE

nwkManagerAddr 0x92 Integer 0x0000 - 0xfff7 The address f the designated
network channel manager
function. Usually the ZC.

0x0000

nwkMaxSourceRoute 0x93 Integer 0x00 - 0xff The maximum number of hops in
a source route

0x0c

nwkUpdateId 0x94 Integer 0x00 - 0xff Value identifying a snapshot of
the network settings with which
the node is operating with

0x00

nwkTransactionPersistenceTime 0x95 Integer 0x0000 - 0xffff Maximum time (in superframe
periods) that a transaction is
stored by a ZC and indicated in
its beacon

0x01f4

Table 8-3. NWK Information Base Attributes (continued)

Attribute ID Type Range Description Default

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

8-8 Freescale Semiconductor

nwkShortAddress 0x96 Integer 0x0000 - 0xfff7 16-bit address that the devices
uses to communicate with the
PAN

0xffff

nwkStackProfile 0x97 Integer 0x00 - 0x0f Identifier of the ZigBee stack
profile in use for the device

nwkBroadcastTransactionTable 0x98 Set N/A Current set of broadcast
transaction table entered in the
device

Null set

nwkGroupIDTable 0x99 Set Variable Set of group identifiers for groups
of which this device is a member

Null set

nwkExtendedPANID 0x9a 64-bit
extende

d
address

0x0000000000
000000 -

0xfffffffffffffffe

Extended PAN Identifier for the
PAN of which the device is a
member

0x0000000000
000000

nwkUseMulticast 0x9b Boolean TRUE or
FALSE

TRUE: multicast occurs at the
network layer
FALSE: multicast occurs at the
APS layer and using the APS
header

TRUE

nwkRouteRecordTable 0x9c Set Variable Route record table Null set

nwkIsConcentrator 0x9d Boolean TRUE or
FALSE

TRUE: Device is a concentrator
FALSE: Device is not a
concentrator

FALSE

nwkConcentratorRadius 0x9e Integer 0x00 - 0xff Hop count radius for
concentrator route discoveries

0x00

nwkConcentratorDiscoveryTime 0x9f Integer 0x00 - 0xff Time in seconds between
concentrator route discoveries. If
set to 0x00, the discoveries are
done at startup and by the next
higher layer only.

0x00

nwkSecurityLevel 0xa0 octet 0x00-0x07 The security level for outgoing
and incoming NWK frames; the
allowable security level
identifiers

set by stack
profile -
normally 0x05

Table 8-3. NWK Information Base Attributes (continued)

Attribute ID Type Range Description Default

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 8-9

nwkSecurityMaterialSet 0xa1 security
descript

or

variable Set of network security material
descriptors capable of
maintaining an active and
alternate network key.

NA

nwkActiveKeySeqNumber 0xa2 integer octet The sequence number of the
active network key in
nwkSecurityMaterialSet.

0x00

nwkAllFresh 0xa3 Boolean TRUE or
FALSE

Indicates whether incoming
NWK frames must be all checked
for freshness when the memory
for incoming frame counts is
exceeded.

TRUE

nwkSecureAllFrames 0xa5 Boolean TRUE or
FALSE

Indicates whether security shall
be applied to incoming and
outgoing NWK data frames. If set
to 0x01,
security processing shall be
applied to all incoming and
outgoing frames except data
frames destined for the current
device that have the security
sub-field of the frame control field
set to 0. If this attribute has a
value of 0x01, the NWK layer
shall not relay frames that have
the security sub-field of the frame
control field set to 0. The
SecurityEnable parameter of the
NLDEDATA.requestprimitive
shall override the setting

TRUE

nwkLinkStatusPeriod 0xa6 Integer 0x00 - 0xff The link time in seconds between
link status command frames

0x0f

nwkRouterAgeLimit 0xa7 Integer 0x00 - 0xff Number of missed link status
command frames before
resetting the link costs to zero

0x03

nwkUniqueAddr 0xa8 Boolean TRUE or
FALSE

Flag that determines whether the
NWK layer should detect and
correct conflicting addresses.

TRUE: assume addresses are
unique
FALSE: addresses may not be
unique

TRUE

Table 8-3. NWK Information Base Attributes (continued)

Attribute ID Type Range Description Default

Network Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

8-10 Freescale Semiconductor

nwkAddressMap 0xa9 Set Variable Current set of 64-bit IEEE to
16-bit network address map

Null set

nwkProtocolVersion N/A octet 0x02 The version of the ZigBee NWK
protocol in the device

0x02

nwkTxTotalFailures N/A octet 00-0xFF Number of Tx failures totally
registered

NA

nwkIeeeAddress NA IEEE
address

IEEE address The device own IEEE address NA

nwkLogicalChannel NA octet 11-26 Channel currently used NA

nwkParentShortAddress NA integer 0x0000-0xFFFF Parent’s short address NA

nwkParentLongAddress NA IEEE
address

IEEE address Parent’s IEEE address NA

nwkDeviceDepth NA octet 0x0-0x0f Current depth of the device NA

NwkKeyType NA Octet 0x01, 0x05 NetworkKeyType 0x01

nwkPreconfiguredKey NA bool_t TRUE
FALSE

Is Pre-configured key used? NA

nwkDevType NA octet 0x00
0x01
0x02

Coordinator = 0x00
Router = 0x01
End device 0x02

NA

Table 8-3. NWK Information Base Attributes (continued)

Attribute ID Type Range Description Default

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 9-1

Chapter 9
Application Support Layer
BeeStack augments the communication capabilities of ZDO with the Application Support Layer (ASL).
Although not a true layer, ASL generates application and application-layer commands in a form that ZDP
can efficiently process.

ASL uses the SAP handlers to send commands to ZDP. For example, the ASL_NWKAddr_req gets taken
over by ZDP for processing (see NWK_addr_req).

See the file ASL_Interface.c for a list of all the LCD strings.

The application support layer (ASL) includes all of the utility function prototypes for the BeeKit
applications.

9.1 ASL Utility Functions
The function prototypes in ASL_UserInterface.h include the following:

• void ASL_InitUserInterface(char *pApplicationName);
• void ASL_DisplayChangeToCurrentMode(uint8_t DeviceMode);
• void ASL_UpdateDevice(zbEndPoint_t ep, SystemEvents_t event);
• void ASL_HandleKeys(key_event_t event);
• void ASL_ChangeUserInterfaceModeTo(UIMode_t DeviceMode);
• void ASL_AppSetLed(LED_t LEDNr,LedState_t state);
• void ASL_LCDWriteString(char *pstr);
• void ASL_DisplayTemperature(int16_t Temperature);

9.2 ASL Data Types
The structure ASL_DisplayStatus_t keeps track of the LED states for certain modes in an application.
typedef struct ASL_DisplayStatus_Tag{

uint8_t Leds;
} ASL_DisplayStatus_t;

The structure ASL_SendingNwkData_t keeps the information for the type of communication between
applications. For example,
typedef struct ASL_SendingNwkData_tag{

zbAddrMode_t gAddressMode;
zbGroupId_t aGroupId;
zbSceneId_t aSceneId;
zbNwkAddr_t NwkAddrOfIntrest;

}ASL_SendingNwkData_t;

Application Support Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

9-2 Freescale Semiconductor

Table 9-1 shows the messages used by the application for certain events, which can be re-configured by
the developer. See also ASL_Interface.h for a list of all the LCD strings.

Table 9-1. ASL User Interface Messages

String Variable Default Value

gsASL_ChannelSelect[] “Select channel”

gsASL_Running[] “Running Device”

gsASL_PermitJoinEnabled[] “Permit Join (E)”

gsASL_PermitJoinDisabled[] “Permit Join (D)”

gsASL_Binding[] “Binding”

gsASL_BindingFail[] “Binding Fail“

gsASL_BindingSuccess[] “Binding Success“

gsASL_UnBinding[] “UnBinding“

gsASL_UnBindingFail[] “UnBinding Fail“

gsASL_UnBindingSuccess[] “UnBinding Success“

gsASL_RemoveBind[] “Remove Binding“

gsASL_ResetNode[] “ResetNode“

gsASL_IdentifyEnabled[] “Identify Enabled“

gsASL_IdentifyDisabled[] “Identify Disabled“

gsASL_Matching[] “Matching“

gsASL_MatchFound[] “Match Found“

gsASL_MatchFail[] “Match Fail“

gsASL_MatchNotFound[]" “No Match Found“

Application Support Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 9-3

9.3 ASL Utility Functions
The application support library (ASL) includes all of the utility function prototypes for the BeeKit
applications.

9.3.1 Initialize User Interface
This function initializes the devices (LEDs and keys), data, and callback functions needed for the user
interface.

Prototype
void ASL_InitUserInterface(char *pApplicationName);

9.3.2 Set Serial LEDs
This function flashes the LEDs in a serial pattern and keeps track of the state of the LEDs when in the
application mode.

Prototype
void ASL_SerialLeds(void);

9.3.3 Stop Serial LEDs
This function stops the serial LEDs flashing and turns off all of them.

Prototype
void ASL_StopSerialLeds(void);

9.3.4 Set LED State
The function ASL_SetLed sets the state of the LED (LED1, LED2, LED3 or LED4, LED_ALL) to a given
state (gLedFlashing_c, gLedStopFlashing_c, gLedOn_c, gLedOff_c, gLedToggle_c) in the application
mode, keeping track of all the states changes in this mode.

Prototype
void ASL_AppSetLed(LED_t LEDNr, uint8_t state);

9.3.5 Write to LCD
This function writes a given string (pstr) on line one of the LCD, when the LCD is supported.

Prototype
void ASL_LCDWriteString(char *pstr);

Application Support Layer

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

9-4 Freescale Semiconductor

9.3.6 Change User Interface Mode
This function indicates to the device the mode in which it is running, and sends as a parameter the mode
to change to, either gConfigureMode_c for configuration mode or gApplicationMode_c for application
mode.

Prototype
void ASL_ChangeUserInterfaceModeTo(uint8_t DeviceMode);

9.3.7 Display Current User Interface Mode
ASL_DisplayChangeToCurrentMode displays the device mode when changing between user interface
modes. The function uses the parameters gConfigureMode_c for configuration mode or
gApplicationMode_c for application mode.

Prototype
void ASL_DisplayChangeToCurrentMode(uint8_t DeviceMode);

9.3.8 Update Device
Based on the application event, the function ASL_UpdateDevice will call certain functions. This
function contains all the events common to all applications using the files ASL_UserInterface.h and
ASL_UserInterface.c. Those common events include End Device Bind, Change Mode, toggle identify
mode, add group, store scene, and recall scene.

Prototype
void ASL_UpdateDevice(zbEndPoint_t ep, uint8_t event);

9.3.9 Handle Keys
This function handles the common keys to all applications using the files ASL_UserInterface.h and
ASL_UserInterface.c, regardless of mode (application or configuration).

Prototype
void ASL_HandleKeys(key_event_t);

9.3.10 Display Temperature
This function displays a temperature value (negative or positive) on the LCD in the form “TEMP = 452
C”.

Prototype
void ASL_DisplayTemperature(int16_t Temperature);

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 10-1

Chapter 10
BeeStack Common Functions
The BeeStack common prototypes provide helper functions to all layers in BeeStack. These primitives
allow, among many things, switching from over-the-air (OTA) to native format (that is, from little-endian
to big-endian multi-byte values), as well as specifying the number of elements in an array.

10.1 BeeStack Common Prototypes
The prototypes common to all BeeStack layers include functions that convert to and from native formats
to over-the-air formats, as shown in Table 10-1.

BeeStack common macros, shown in Table 10-2, include functions that define the member offset and
number of elements in arrays.

Table 10-1. Common Prototypes

Prototype Description

uint16_t OTA2Native16(uint16_t); For converting 16-bit data from over-the-air to native format

uint16_t Native2OTA16(uint16_t); For converting 16-bit data from native to over-the-air format

uint32_t OTA2Native32(uint32_t); For converting 32-bit data from over-the-air to native format

uint32_t Native2OTA32(uint32_t); For converting 32-bit data from native to over-the-air format

uint64_t OTA2Native64(*uint64_t); For converting 64-bit data from over-the-air to native format

uint64_t Native2OTA64(*uint64_t); For converting 64-bit data from native to over-the-air format

Table 10-2. Common Macros

Macro Description

NumberOfElements(array) Number of elements in an array

MbrOfs(type, member) Offset of a member within a structure

MbrSizeof(type, member) Size of a member in a structure

UintOf(p2Bytes) (*(uint16_t *) (p2Bytes)) Casts value to uint16 value

BeeStack Common Functions

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

10-2 Freescale Semiconductor

10.2 Common Network Functions
The BeeStack common network functions in Table 10-3 include confirming the NWK address, verifying
the NWK address, and copying bytes to overwrite table entries.

Table 10-3. BeeStack Common Network Functions

Function Description

bool_t IsSelfIeeeAddress(zbIeeeAddr_t aIeeeAddr); Is this the node’s own IEEE address (True or
False)

bool_t IsSelfNwkAddress(zbNwkAddr_t aNwkAddr); Is this the node’s own NWK address?

bool_t IsBroadcastAddress(zbNwkAddr_t aNwkAddr); Is this one of the broadcast addresses?

bool_t IsValidNwkUnicastAddr(zbNwkAddr_t aNwkAddr); Is this a valid NWK addr for unicasting?

bool_t IsValidNwkAddr(zbNwkAddr_t aNwkAddr); Confirm valid NWK address before sending

void BeeUtilLargeMemSet(void *pBuffer, uint8_t value, uint16_t iCount); Set a large array of memory with the given value
(larger than FLib_memset can handle)

void BeeUtilLargeZeroMemory(void *pBuffer, uint16_t iCount) Set a large array of memory to zeroes (larger
than FLib_memset can handle)

void Copy8Bytes(zbIeeeAddr_t aIeeeAddr1,zbIeeeAddr_t aIeeeAddr2 Copies 8 bytes (e.g. IEEE address) from one
location to another. Assumes they do not
overlap.

bool_t IsEqual8Bytes(zbIeeeAddr_t aIeeeAddr1, zbIeeeAddr_t aIeeeAddr2); Are the two IEEE addresses equal?

void Fill8BytesToZero(zbIeeeAddr_t aIeeeAddr1); Fill IEEE (long) address with 0s

void FillWithZero(void *pBuffer, uint8_t size); Fill any length buffer with 0s

bool_t Cmp8BytesToZero(zbIeeeAddr_t aIeeeAddr1); Is this IEEE address all 0s?

bool_t Cmp8BytesToFs(zbIeeeAddr_t aIeeeAddr1); Is this IEEE address all 0xFFs?

uint16_t Swap2Bytes(uint16_t iOldValue); Swaps bytes to convert between OTA and
native format for a 16-bit word

void Swap2BytesArray(uint8_t *pArray); Swaps bytes to convert between OTA and
native format for a 2-byte array

bool_t IsEqual2BytesInt(void *ptr, uint16_t val) Is the given memory location equal to the value
given?

void Set2Bytes(void *ptr, uint16_t val) Copies a 16-bit variable to a given location with
the bytes swapped

void Copy16Bytes(void *pDst, void *pSrc) Copies 16-bytes of data unconditionally

bool_t Cmp16BytesToZero(void *pArray) Are all the bytes equal to zero in the given
array?

uint8_t *FLib_MemChr(uint8_t *pArray, uint8_t iValue, uint8_t iLen); Look for a byte in an array of bytes

void BeeUtilSetIndexedBit(uint8_t *pBitArray, index_t iBit); Set an indexed bit

uint8_t BeeUtilClearIndexedBit(uint8_t *pBitArray, index_t iBit); Clear an indexed bit

bool_t BeeUtilGetIndexedBit(uint8_t *pBitArray, index_t iBit); Get and indexed bit

BeeStack Common Functions

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 10-3

bool_t BeeUtilArrayIsFilledWith(uint8_t *pArray, uint8_t value, index_t iLen); Check to see if an array is filled with a particular
value

bool_t ApsIsGroupInGroupTable(zbGroupId_t aGroupId) Is the given GroupID in the group table?

bool_t IsIncompleteBindNwkAddr(zbNwkAddr_t aNwkAddr) Is this an incomplete binding network address?

bool_t IsValidPanId(zbPanId_t aPanId) Is this a valid PAN ID?

bool_t IsValidExtendedPanId(zbIeeeAddr_t aIeeeAddr) Is this a valid Extended PAN ID?

void BeeUtilZeroMemory(void *pPtr, zbSize_t bufferSize); Clears a buffer to zero

uint32_t Swap4Bytes(uint32_t iOldValue) Swaps bytes to convert between OTA and
native format for a 32-bit word

void Swap8Bytes(uint8_t *pInput) Swaps bytes to convert between OTA and
native format for a 64-bit word

uint8_t BeeUtilBitToIndex(uint8_t *pBitArray, index_t iLen) Determine the first bit in a bit indexed array

uint8_t GetRandomRange(uint8_t low, uint8_t high) Get a number at random from a given range

uint32_t GetRandomNumber(void) Get a 32-bit random number (available only for
the MC1322x)

uint16_t GetRandomNumber(void) Get a 16-bit random number (not available for
the MC1322x)

void SeedRandomNumber(uint16_t seed); Set a 16-bit seed value

bool_t CanIHearThisShortAddress(zbNwkAddr_t aSourceAddress) Is the given address within the
ICanHearYouTable?

TRUE: address is within the table (also
returns TRUE if global variable
gICanHearYouCounter is equal to zero)

FALSE: address is not within the table and
gICanHearYouCounter is different than 0

Table 10-3. BeeStack Common Network Functions (continued)

Function Description

BeeStack Common Functions

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

10-4 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 11-1

Chapter 11
User-Configurable BeeStack Options
BeeStack gets most of its configuration from BeeKit properties (which are compile-time options). This
section explains some of these compile-time options available to the user.

Freescale recommends setting all options through BeeKit.

11.1 Compile-Time Options
These compile-time options can be changed by the user. The compile-time options are included in the
ApplicationConf.h file.

Table 11-1. ApplicationConf.h Compile-Time Options

Option Description

mDefaultValueOfChannel_c Select the default channel(s) on which to form or join the network. Bit
mask of channels. Use 0x07fff800 to allow any of the 16 channels
(11-26) to form or join a network.

mDefaultValueOfPanId_c Default value of PAN ID on which to form or join the network. Use 0xffff
to choose random PAN ID on which to form, or any PAN ID on which to
join.

mDefaultNwkExtendedPANID_c Default value of extended PAN ID. Use
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 to choose the IEEE
address of the ZC when forming a network or to mean any extended
PAN ID (use mDefaultValueOfPanId_c) when joining a network.
Extended PAN ID takes precedence over the PAN ID option.

mDefaultValueOfExtendedAddress_c The MAC (or IEEE) address of the node. Use
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 to request the stack pick a
random MAC address; do not use this for production nodes.

mDefaultValueOfAuthenticationPollTimeOut_c The time (in milliseconds) for a ZigBee End Device to poll for joining a
network.

gRxOnWhenIdle_d Set to 0x01 (TRUE) to enable a ZED to continuously power it’s receiver.
When set to TRUE, the ZED will not use polling.

mDefaultValueOfNetworkKey_c The default network key. Can be any 128-bit value.

mDefaultValueOfNwkKeyPreconfigured_c Choose whether a preconfigured key or non-preconfigured key is used.
A non-preconfigured key is sent over-the-air in the clear on the last hop
when a node joins the network, which is used in a Home Automation
network. A preconfigured key must be entered into the node out of band
(through a serial port or other application defined method)

gAllowNonSecure_d Allow non-secure packets to be sent/received on a secure network.
Note: this creates a security loop-hole if enabled. Disabled (set to
FALSE) by default.

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

11-2 Freescale Semiconductor

mDefaultValueOfEndDeviceBindTimeOut_c The time (in milliseconds) for an end-device-bind to timeout on the ZC.

mDefaultValueOfPermitJoinDuration_c Value of permit join. Default is 0xff which is always on. Set to 0x00 to
have permit join off when the node starts up.

mDefaultValueOfNwkScanAttempts_c Number of active scans to request beacons. Set higher if network is
dense (many nodes in the vicinity).

mDefaultValueOfNwkTimeBwnScans_c Time in milliseconds between beacon scans.

mDefaultValueOfAuthTimeOutDuration_c Timeout for authentication process. Defaults to 0x1388 (5000)
milliseconds.

mDefaultReuseAddressPolicy_c When a child leaves, is it OK to reuse the address? Set to FALSE by
default.

gMaxFailureCounter_c Determines # of times a polling child must fail to contact its parent
before trying to rejoin the network. In the case of routers, hoe many
failures before attempting to find a new route.

mDefaultValueOfNwkFormationAttempts_c How many times to scan until a suitable free channel/PAN ID is found.
Valid for ZCs only.

mDefaultValueOfDiscoveryAttemptsTimeOut_c Timeout between network discovery attempts. Valid for ZRs and ZED

mDefaultValueOfNwkDiscoveryAttempts_c Number of attempts to discover a network to join. Valid for ZRs and
ZEDs. Defaults to 0, which means forever.

mDefaultValueOfBatteryLifeExtension_c Does this node operate on batteries?

mDefaultValueOfCurrPowerSourceAndLevel_c What is the current power source and level?

mDefaultValueOfNwkOrphanScanAttempts_c How many times to attempt to join when orphaned? End devices only.
Defaults to 0, which means forever.

mDefaultValueOfNwkSecurityLevel_c Security level, as defined by the ZigBee specification. To be compliant,
security level 5 must be selected. All others do not conform to ZigBee
profiles.

mDefaultValueOfLpmStatus_c Enable low power during startup or wait until application enables low
power.

gPowerSource_d Indicates the power source.

gMinNumberOfRouters_c The amount of routers to select by default from the NT to be used during
the FA scanning procedure

gMaxIncomingErrorReports_c The minimum amount of reports to receive before start the FA
procedure

gMaxTimeoutForIncomingErrorReports_c The number of minutes to wait between reports to the network manager
that this node has reached the maximum # of errors.

gMaxTxFailuresPercentage_c The limit on the transmissions failure tolerance. Expressed in
percentage

gApsInterframeDelayDefault_c Delay (in milliseconds) between frames when transmitting fragmented
packets

gApsWindowSizeDefault_c This is the # of fragments in a single window

Table 11-1. ApplicationConf.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 11-3

gApsMaxFragmentLengthDefault_c Maximum size of each fragment over the air in fragmented
APSDE-DATA.request transmissions

gApsFragmentationPollTimeOut_c This value is used for increasing the poll rate during the reception of
fragmented packets

gApsChannelTimerDefault_c Timer that counts down to 0 to indicate whether it is OK to change
channels. Units in hours

gDefaultScanDuration_c Sets the default scan duration time for frequency agility

gDefaultScanCount_c Sets the default scan count for frequency agility

gExtraTimeWindow_c Sets the default extra time window for frequency agility beyond the scan
time per channel. In milliseconds

gFullChannelList_c Defines which channels to scan when forming or joining a network if the
preferred (mDefaultValueOfChannel_c) didn't work.

mDefaultValueOfConfirmationPollTimeOut_c After a ZigBee End-Device (ZED) receives data from it's parent, how
quickly does it poll the parent again for data?

mDefaultValueOfIndirectPollRate_c How quickly does a ZED poll its parent under normal conditions.

mDefaultValueOfNwkKeyType_c The default type of key to handle in the secure environment for the NWK
layer auxiliary frame.

mDefaultValueOfNwkActiveKeySeqNumber_c Default value of Network Active Key Sequence Number. Always starts
at 0.

mDefaultValueOfTrustCenterKey_c Default trust center key.

mDefaultValueOfTrustCenterKeyType_c The default type of key to handle in the secure environment for the APS
layer auxiliary frame.

mDefaultValueOfApplicationKeyType_c The default key type to answer to a Request key.

mDefaultValueOfTrustCenterLongAddress_c Default value of the Trust Center IEEE address.

mDefaultApsSecurityTimeOutPeriod_c Default period of time a device will wait for an expected security protocol
frame (in milliseconds).

gIeeeFilterMask_c Allows a router or coordinator to refuse other nodes to join if the IEEE
address does not match the filter criteria.

gIeeeFilterValue_c Allows a router or coordinator to refuse other nodes to join if the IEEE
address does not match the filter criteria.

mDefaultValueOfNwkUseMulticast_c Allows an application to decide if ZigBee Pro networks use multicast
(NWK layer groups) or groupcast (APS layer groups).

mDefaultValueOfApsFlagsAndFreqBand_c Set to 0x40 to indicate 2.4GHz band. Do not change.

mDefaultValueOfManfCodeFlags_c 16-bit number obtained by each OEM in the ZigBee Alliance to uniquely
identify that manufacturer.

mDefaultValueOfMaxTransferSize_c Indicates how large of a ASDU (application payload, including
fragmentation) can be received by this node.

mDefaultValueOfParentLinkRetryThreshold_c How many times a ZED should attempt to contact his parent before
initiating rejoin process?

Table 11-1. ApplicationConf.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

11-4 Freescale Semiconductor

mDefaultValueOfCurrModeAndAvailSources_c Indicates if this devices is mains powered or not in Node Descriptor.

mDefaultValueOfRejoinInterval_c How often in seconds a ZED will try to rejoin the network after it has left
it. This is also used for ZCs and ZRs to determine how long to wait
between form/join attempts.

mDefaultValueOfMaxRejoinInterval_c Upper bound on Rejoin Interval (OrphanScanAttemptsTimeOut), in
seconds.

mDefaultValueOfFormationAttemptsTimeOut_c How long to keep trying to join a network? That is, how many total
seconds before giving up? Will give up based on time or time of #
attempts, whichever comes first.

mDefaultValueOfOrphanScanAttemptsTimeOut_c How long to keep trying to rejoin a network? That is, how many total
seconds before giving up? Will give up based on time or time of #
attempts, whichever comes first.

mDefaultValueOfNwkAllFresh_c nwkAllFresh field in NIB. Set to TRUE to check all frames for freshness.

mDefaultValueOfNwkSecureAllFrames_c nwkSecureAllFrames in the NIB. If so, then frames are decrypted and
re-encrypted per hop (which allows authentication). If not, then frames
are only secured at either end. Must be TRUE to be ZigBee compliant.

mNwkRptConstantCost_c If this is set to 0x00, the NWK layer shall calculate link cost from all
neighbor nodes using the LQI values reported by the MAC layer.
Otherwise it shall report a constant value.

mNwkRouteDiscRetriesPermitted_c The number of retries allowed after an unsuccessful route request.

mNwkUseTreeRouting_c A flag that determines whether the NWK layer should assume the ability
to use tree routing. Stack profile 0x01 (aka ZigBee 2007) uses Tree.
Stack profile 0x02 (aka ZigBee Pro) does not.

mDefaultNwkNextAddress_c Only relevant if mNwkAddressAlloc_c is FALSE. The next network
address that will be assigned to a device requesting association.

mDefaultNwkAvailableAddress_c Only relevant if mNwkAddressAlloc_c is FALSE. The size of remaining
block of addresses to be assigned.

mDefaultNwkAddressIncrement_c Only relevant if mNwkAddressAlloc_c is FALSE. The amount by which
gDefaultNwkNextAddress_c increments each time an address is
assigned.

mDefaultNwkShortAddress_c 16-bit address that the device uses to communicate with the PAN.

mNwkProtocolVersion_c The version of the ZigBee protocol currently in use by the NWK layer.
Must be 0x02. Do not change.

mDefaultLogicalChannel_c Default value for the logical channel. Set to 0x00 to allow the node to
pick a channel from the channel list.

mDefaultParentShortAddress_c Default value of current device's parent address, little endian. Set to
0xffff to find parent.

mDefaultParentLongAddress_c Default value of current device's parent long address, little endian.

mDefaultValueOfComplexDescFieldCount_c Default value for field count. Indicates how many fields are included in
the complex descriptor

Table 11-1. ApplicationConf.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 11-5

mDefaultValueOfComplexDescLangCharSet_c Default values for Language code and character set in Complex
descriptor.

mDefaultValueOfComplexDescManufactureName_c Default value of manufacturer name in complex descriptor.

mDefaultValueOfComplexDescModelName_c Default value of model name in complex descriptor.

mDefaultValueOfComplexDescSerialNumber_c Default value of serial number in complex descriptor.

mDefaultValueOfComplexDescDeviceUrl_c Default value of device URL in complex descriptor.

mDefaultValueOfComplexDescIcon_c Default value of descriptor Icon in complex descriptor.

mDefaultValueOfComplexDescIconUrl_c Default value of Descriptor Icon URL in complex descriptor.

gDefaultRetriesStochasticAddrLocalDevice_c Default value of the times in which a ZC or ZR can generate a network
address for the device who attempt to join to it.

gDefaultRetriesStochasticAddrNetworkWide_c Number of times a parent will try to assign a random address to a joining
child.

gApsDesignatedCoordinatorDefault_c Set to TRUE (1) if the device should become the ZigBee Coordinator on
startup, FALSE if otherwise. This flag is only relevant for a ZigBee
device that can become a router or coordinator on startup.

gApsNonMemberRadiusDefault_c Value to be used for the NonmemberRadius parameter when using
NWK layer multicast.

gApsUseInsecureJoinDefault_c Flag controlling insecure join at startup. Specifies if the rejoin process
should be secured or unsecured.

gNwkManagerShortAddr_c Short address of the network manager.

gConcentratorRadius_c The radius for many-to-one route discovery from a concentrator
(gateway).

gConcentratorDiscoveryTime_c The amount of time (in seconds) between many-to-one route
discoveries.

gApsMaxEntriesForPermissionsTable_c Maximum number of entries for the Permissions Configuration Table, a
zero value means that the Permissions Configuration Table is not
available.

gZdoStopModeDefault_c Stop mode to use if this node receives an over-the-air NLME-LEAVE
command.

gZdoStartModeDefault_c Start mode to use if this node receives an over-the-air NLME-LEAVE
command.

Table 11-1. ApplicationConf.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

11-6 Freescale Semiconductor

11.2 More Compile-time Options
Compile-time options available to users in BeeStackConfiguration.h include those macros listed in
Table 11-2.

Table 11-2. BeeStackConfiguration.h Compile-Time Options

Option Description

gNwkInfobaseMaxBroadcastRetries_c Number of retries on each broadcast. Default is 2.

gCoordinatorNwkInfobaseMaxNeighborTableEntry_c Maximum number of neighbor table entries on a ZC. Default is 24.

gRouterNwkInfobaseMaxNeighborTableEntry_c Maximum number of neighbor table entries on a ZR. Default is 25.

gEndDevNwkInfobaseMaxNeighborTableEntry_c Maximum number of neighbor table entries on a ZED. Default is 6.

gNwkInfobaseMaxRouteTableEntry_c Number of entries in the routing table. Default is 6.

gNwkMaximumChildren_c Maximum number of total children (routers + end-devices). Default is
20 and must be 20 for Stack Profile 0x01. Advanced option.

gNwkMaximumRouters_c Maximum number of routers. Default is 6. Advanced option.

gNwkMaximumDepth_c Maximum depth from ZC in a tree/mesh network. Default is 15 in
stack profile 0x02. Advanced option.

gICanHearYouTableCapability_d Set to 0x01 (TRUE) to enable the I-can-hear-you-table. Allows for
easy capture of ZigBee routing behavior by defining which nodes can
hear which other nodes.

gDefaultValueOfMaxEntriesForICanHearYouTable_c Limits which nodes the NWK layer can hear. Use to analyze
multi-hop behavior of the network.

gApsMaxAddrMapEntries_c Number of address map entries. Used for binding tables. Default is
5. Set to at least gMaximumApsBindingTableEntries_c.

gMaximumApsBindingTableEntries_c Number of local binding table entries. Default 5.

gApsMaxGroups_c Number of local group table entries. Default 5.

gApsMaxRetries_c Maximum # of retries by APS layer. Default 3.

gApsAckWaitDuration_c Wait (in milliseconds) between APS retries. Default is 1800
milliseconds or 1.8 seconds.

gScanDuration_c The scan duration for energy detect and active scans, as defined by
the ZigBee specification (an exponential scale).

gFrequencyAgilityCapability_d Enables the Frequency Agility state machine.

gFragmentationCapability_d Enables the Fragmentation feature.

gInterPanCommunicationEnabled_c Enables Inter-Pan communication features.

gHttMaxIndirectEntries_c Max number of indirect messages that can be in the Handle Tracking
Table

gMaxNumberOfTxAttempts_c How many messages will be sent to the MAC for polling ZigBee
End-Devices

gSecNwkIncFrameCounters_c Incoming frame counters. This determines the number of secure
nodes this node may communicate with

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 11-7

gApsMaxDataHandlingCapacity_c Determines the # of simultaneous messages APS can handle from
higher layers (both ZDP and application).

gNWK_addr_req_d Enable request.

gNWK_addr_rsp_d Enable response.

gIEEE_addr_req_d Enable request.

gIEEE_addr_rsp_d Enable response.

gNode_Desc_req_d Enable request.

gNode_Desc_rsp_d Enable response.

gPower_Desc_req_d Enable request.

gPower_Desc_rsp_d Enable response.

gSimple_Desc_req_d Enable request.

gSimple_Desc_rsp_d Enable response.

gActive_EP_req_d Enable request.

gActive_EP_rsp_d Enable response.

gMatch_Desc_req_d Enable request.

gMatch_Desc_rsp_d Enable response.

gComplex_Desc_req_d Enable request.

gComplex_Desc_rsp_d Enable response.

gUser_Desc_req_d Enable request.

gUser_Desc_rsp_d Enable response.

gDiscovery_Cache_req_d Enable request.

gDiscovery_Cache_rsp_d Enable response.

gDevice_annce_d Enable end-device-announce when a node joins or rejoins the
network.

gUser_Desc_set_d Enable request.

gUser_Desc_conf_d Enable response.

gSystem_Server_Discovery_req_d Enable request.

gSystem_Server_Discovery_rsp_d Enable response.

gDiscovery_store_req_d Enable request.

gDiscovery_store_rsp_d Enable response.

gNode_Desc_store_req_d Enable request.

gNode_Desc_store_rsp_d Enable response.

gPower_Desc_store_req_d Enable request.

Table 11-2. BeeStackConfiguration.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

11-8 Freescale Semiconductor

gPower_Desc_store_rsp_d Enable response.

gActive_EP_store_req_d Enable request.

gActive_EP_store_rsp_d Enable response.

gSimple_Desc_store_req_d Enable request.

gSimple_Desc_store_rsp_d Enable response.

gRemove_node_cache_req_d Enable request.

gRemove_node_cache_rsp_d Enable response.

gFind_node_cache_req_d Enable request.

gFind_node_cache_rsp_d Enable response.

gEnd_Device_Bind_req_d Enable request.

gEnd_Device_Bind_rsp_d Enable response.

gBind_req_d Enable request.

gBind_rsp_d Enable response.

gUnbind_req_d Enable request.

gUnbind_rsp_d Enable response.

gBind_Register_req_d Enable request.

gBind_Register_rsp_d Enable response.

gReplace_Device_req_d Enable request.

gReplace_Device_rsp_d Enable response.

gStore_Bkup_Bind_Entry_req_d Enable request.

gStore_Bkup_Bind_Entry_rsp_d Enable response.

gRemove_Bkup_Bind_Entry_req_d Enable request.

gRemove_Bkup_Bind_Entry_rsp_d Enable response.

gBackup_Bind_Table_req_d Enable request.

gBackup_Bind_Table_rsp_d Enable response.

gRecover_Bind_Table_req_d Enable request.

gRecover_Bind_Table_rsp_d Enable response.

gBackup_Source_Bind_req_d Enable request.

gBackup_Source_Bind_rsp_d Enable response.

gRecover_Source_Bind_req_d Enable request.

gRecover_Source_Bind_rsp_d Enable response.

gMgmt_NWK_Disc_req_d Enable request.

gMgmt_NWK_Disc_rsp_d Enable response.

Table 11-2. BeeStackConfiguration.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 11-9

gMgmt_Lqi_req_d Enable request.

gMgmt_Lqi_rsp_d Enable response.

gMgmt_Rtg_req_d Enable request.

gMgmt_Rtg_rsp_d Enable response.

gMgmt_Bind_req_d Enable request.

gMgmt_Bind_rsp_d Enable response.

gMgmt_Leave_req_d Enable request.

gMgmt_Leave_rsp_d Enable response.

gMgmt_Direct_Join_req_d Enable request.

gMgmt_Direct_Join_rsp_d Enable response.

gMgmt_Permit_Joining_req_d Enable request.

gMgmt_Permit_Joining_rsp_d Enable response.

gMgmt_Cache_req_d Enable request.

gMgmt_Cache_rsp_d Enable response.

gSystemEventEnabled_d Tell application about ZDO and system events. Defaults to TRUE.

gNumberOfEndPoints_c Maximum number of application endpoints supported by the node.
Default is 5.

gMgmt_NWK_Update_req_d Enable request

gMgmt_NWK_Update_notify_d Enable response

gMSPstackProfileEnabled_d Enables manufacturer specific profile ID.

gZigbeeProIncluded_d Enables Stack Profile 2 for the application.

gAppStackProfile_c Stack profile value over the air.

gMaxBroadcastTransactionTableEntries_c Number Of Outstanding Broadcasts that are supported.

gNwkInfobasePassiveAckTimeout_c Network Passive Ack Timeout.

gNwkInfobaseBroadcastDeliveryTime_c Time duration in seconds that a broadcast message needs to
encompass the entire network.

gNwkAgingTimeForEndDevice_c Time duration in minutes that a neighbor table entry for an end device
needs to wait to be expired.

gNwkAgingTimeForRouter_c Time duration in minutes that a neighbor table entry for a router
needs to wait to be expired.

gNwkTransPersistenceTime_c This value is used to purge the data after specified duration. Do not
change.

gNwkRoutingMaxRouteDiscoveyTableEntry_c How many simultaneous route discoveries can this node support?

gNwkInfobaseMaxSourceRouteTableEntry_c How many route record entries can this node sustain?

gNwkMaxHopsInSourceRoute_c The maximum number of hops in a source route.

Table 11-2. BeeStackConfiguration.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

11-10 Freescale Semiconductor

gConcentratorFlag_d Can this node be a concentrator? Only available on Stack Profile
0x02.

gNwkHighRamConcentrator_d Allows the storing/retrieving source routes.

gHandleTrackingTableSize_c Max Handle Tracking Table Entries.

gPacketsOnHoldTableSize_c How many simultaneous messages the network layer can hold until
they get routed.

gMaxNwkLinkRetryThreshold_c Default Transmit Failure Counter. Indicates how many times to fail a
transmission to a specific device before a route repair is initiated

gSamePanIdOk_c It is allowed in the ZigBee specification to form a network with the
same PAN ID as an existing network; as long as the extended PAN
ID is different. Disallow this by default.

gDefaultValueOfMaxEntriesForExclusionTable_c Default number of entries in exclusion table.

gApsLinkKeySecurity_d APS Security (Optional Stack profile 0x01 and 0x02).

gSKKESupported_d APS SKKE activated or not?

gBindCapability_d Is binding capability enabled?

gApsAckCapability_d Does APS Support ACK (acknowledgements)?

gNetworkManagerCapability_d This flag determines if the Node is a NwkManager or not.

gConflictResolutionEnabled_d Is Conflict Resolution Capability enabled?

gNetworkLinkStatusPeriod_c The time in seconds between link status command frames.

gNetworkRouterAgeLimit_c The number of missed link status command frames before resetting
the link costs to zero.

gNwkLinkStatusMultipleFramesPeriod_c Time (in ms) between split link status frames if they need to span
multiple packets due to a large number of neighbors.

gApsMaxAddrMapEntries_c Maximum number of Address Map entries.

gApsMaxLinkKeys_c Maximum number of link keys. This value should match
gApsMaxAddrMapEntries_c.

gApscMinDuplicationRejectionTableSize_c Keeps track of previously heard APS frames so they are only sent to
the application once (prevents duplicates).

gAps64BitAddressResolutionTimeout_c Wait (in ms) duration for the expected delivery time of the nwk
address response needed to complete the address map.

gDefaulEntriesInSKKEStateMachine_c Specifies the number of simultaneous SKKE processes that can be
handled at the same time with different devices.

gDefaultEntriesInEAStateMachine_c Specifies the number of simultaneous Entity Authentications that can
be handled at the same time with different devices.

gExtended_Simple_Desc_req_d Enable request.

gExtended_Simple_Desc_rsp_d Enable response.

gExtended_Active_EP_req_d Enable request.

Table 11-2. BeeStackConfiguration.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 11-11

gExtended_Active_EP_rsp_d Enable response.

gUser_Desc_req_d Enable request.

gUser_Desc_rsp_d Enable response.

gBkup_Discovery_cache_d Enable Backup Discovery Cache Capability?

gNwkEnergyLevelThresHold_d Energy Threshold used when performing ED Scan. 0xFF means all
noise levels are accepted.

Table 11-2. BeeStackConfiguration.h Compile-Time Options (continued)

Option Description

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

11-12 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 12-1

Chapter 12
BeeStack Security
BeeStack supports full ZigBee security for Stack Profile 0x01 and Stack Profile 0x02 (MC1322x only) of
the ZigBee 2007 specification.

12.1 Security Overview
Adding security into a ZigBee network has the following effects

• Network (NWK) layer security for network command frames (route request, route reply, route
error) (ZigBee Feature Set, ZigBee Pro feature set)

• Application (APL) layer security for Application Support Sub-layer (APS) frames (Optional for
ZigBee and ZigBee Pro feature set.)

• Entity authentication.
• Every data packet (at the network payload level) is encrypted with AES 128-bit encryption. This

means that 802.15.4 radios not on the ZigBee network will not be able to understand the packets
sent over-the-air.

• Every packet is authenticated using the same AES 128-bit encryption engine and a 32-bit frame
counter. This means that 802.15.4 radios not on the ZigBee network will not be able to send
over-the-air data to any node in the network, even using a direct replay of the octets from a previous
message.

• Over-the-air packets grow by 15 bytes, with the addition of the AUX header. See Figure 12-1.
• Transmit speed becomes slightly slower (by about 5ms per encode/decode).

While the network is protected from replay attacks, ZigBee security does not prevent the following:
• Denial of service attacks. Any 802.15.4 radio could be put into constant transmit mode using up all

bandwidth in the local vicinity.
• Rogue nodes from hearing the key when a node joins a network. (Only if non-preconfigured key

is used. Preconfigured keys are never transmitted in the clear.)

BeeStack Security

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

12-2 Freescale Semiconductor

Figure 12-1. Secure ZigBee Packet Example

Preconfigured key Means that each node somehow “knows” the network key out-of-band, perhaps
installed at the factory or by a special commissioning tool. The key is never sent
over the air and can be securely updated to a new key.

Non-preconfigured key Used in less secure networks, such as home automation. The key is sent (last hop
only) in the clear.

12.1.1 Security Modes
Two security modes are available:

• Standard Mode (ZigBee and ZigBee Pro feature sets)
— Two NWK keys and APL security via NWK key.
— Ability to switch NWK keys.
— Optional use of Application Link Keys for pairs of communicating devices at APL.

• High Security Mode (ZigBee Pro Feature Set only)
— Two NWK keys
— Separate Link Keys for pairs of communicating devices at Application layer.
— Master Keys with the Trust Center for key transport and key establishment.
— Ability to switch NWK keys.
— Entity authentication between all pairs of communicating devices.

BeeStack Security

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 12-3

12.2 Security Implementation
The Trust Center creates and distributes the network and link keys. It also manages the switch from active
to secondary network keys (Standard Security mode or High Security mode).

Optional support is included for Master Keys and Trust Center Link Key establishment and transport.
(Optional in Standard Security mode and mandatory in High Security mode.)

ZigBee security shares a network key among all nodes in the network, sometimes called a symmetric key.
It is assumed in ZigBee that the network is generally closed (joining disabled) and that if a node is allowed
on the network, that the node is trusted. The ZigBee trust center (on the ZigBee Coordinator) has the ability
to kick nodes off the network or deny them access in the first place.

In addition to standard and high ZigBee security, BeeStack can send unsecured packets in a secure
network. This behavior is not compatible with the ZigBee public profiles standard, but could be used in
private profiles. To send unsecured packets on a secure network, deselect the gApsTxOptionNoSecurity_c
field in the txOptions flags of the AF_DataRequest() and set the property gAllowNonSecure_d to TRUE.

12.3 Security Configuration Properties
The following security properties can be modified in BeeKit to configure BeeStack security.

NOTE
Select the security type (non, standard, high) choosing the appropriate stack
library configuration in BeeKit.

12.3.1 mDefaultValueOfNwkKeyPreconfigured_c
Set mDefaultValueOfNwkKeyPreconfigured_c to 1 to enable a preconfigured key (key obtained
out-of-band). Set it to 0 to enable non-preconfigured key (over-the-air key transport).

12.3.2 mDefaultValueOfNwkSecurityLevel_c
Always use mDefaultValueOfNwkSecurityLevel_c level 5 for compatibility with ZigBee stack profile
0x01. The other ZigBee security levels are covered later in this section.

12.3.3 mDefaultValueOfNetworkKey_c
The mDefaultValueOfNetworkKey_c property lists the key that will be used by BeeStack as the initial key.
This key as a 128-bit key (for use with AES 128-bit encryption), and can be any value other than 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 (all zeros).

12.3.4 gDefaultValueOfMaxEntriesForExclusionTable_c
The gDefaultValueOfMaxEntriesForExclusionTable_c property determines how many entries are in the
exclusion table. These will be automatically excluded from joining the network by the trust center in a
secure network. See the next section for more details.

BeeStack Security

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

12-4 Freescale Semiconductor

12.3.5 mDefaultValueOfNwkKeyType_c
The default type of key to handle in the secure environment for the NWK layer auxiliary frame. Refers to
mDefaultValueOfNetworkKey_c. Set to 0x05 for high security systems, set to 0x01 for standard security
systems.

12.3.6 mDefaultValueOfTrustCenterKeyType_c
Default trust center key. This key can be used as master or link key, the type of key is determined by
mDefaultValueOfTrustCenterKeyType_c

12.3.7 mDefaultValueOfTrustCenterKeyType_c
The default type of key to handle in the secure environment for the APS layer auxiliary frame.

• KeyType = 0x00 Trust Center master key.
• KeyType = 0x04 Trust Center link key.
• KeyType = 0xFF No key preconfigured.

12.3.8 mDefaultValueOfTrustCenterKey_c
Default value of the Trust Center IEEE address. Must be preconfigured if Link keys or high security are
used. Can be set when the TC is know but it will be changed by the transport key if standard security only
is used.

12.3.9 mDefaultValueOfApplicationKeyType_c
The default key type to answer to a Request key when answering 0x02, which means Application Master
key or application link key.

• 0x02 = gApplicationMasterKey_c
• 0x03 = gApplicationLinkKey_c

12.3.10 gSKKESupported_d
APS SKKE enabled or not, the use of SKKE help to establish link keys between the nodes through over
the IAR commands (Optional in Stack Profile 0x01 and 0x02).

12.3.11 gApsLinkKeySecurity_d
• APS Security (Optional Stack profile 0x01 and 0x02) enabled
• mDefaultValueOfTrustCenterLongAddress_c

BeeStack Security

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 12-5

12.4 ZigBee Trust Center Authentication
The trust center resides on the ZigBee Coordinator. This trust center is the only device that allows a node
on a secure ZigBee network. The trust center is not required for normal operation, only for adding nodes
or switching the security key.

The trust center has the opportunity to disallow nodes from joining the network. BeeStack has a built-in
exclusion table, or the application can modify the bool_t deviceInExclusionTable(uint8_t *pIeeeAddress)
function to include any sort of algorithm to include or exclude a node. The ZigBee specification only
provides the IEEE (sometimes called MAC) address for this purpose. There is no other data about the node
wishing to join the network. This function can be found in the ZdoNwkManager.c file.

A node can be forced off the network. To do this, use prototype for the leave request. See ZDP for a
complete discussion of this ASL interface to ZDP.

void ASL_Mgmt_Leave_req
(

zbCounter_t *pSequenceNumber,
zbNwkAddr_t aDestAddress,
zbIeeeAddr_t aDeviceAddres,
zbMgmtOptions_t mgmtOptions

);

12.5 IEEE address join filter
BeeStack has an IEEE address join filter feature built in that works independently of security mode (non,
standard, high). The IEEE filter allows a router or coordinator to refuse to allow other nodes to join if the
IEEE address does not match the filter criteria. Set both the gIeeeFilterMask_c and gIeeeFilterValue_c
properties. The filter check function is available in source code: See ValidateIeeeAddress() in the
AppStackImpl.c file.

BeeStack Security

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

12-6 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 13-1

Chapter 13
Permission Configuration Table
This chapter describes the optional BeeStack Permission Configuration Table feature. The Permission
Configuration Table feature allows out of band configuration so that designated devices can access a
particular functionality in the stack.

NOTE
The Permission Configuration Table only is applicable in stack
configurations that employ security.

See Chapter 4.6.3.8 of revision 17 in the ZigBee Specification.for more details about the Permission
Configuration Table.

13.1 Permission Configuration Table API
The Permission Configuration table is found in the AppStackImpl.c file.

13.1.1 AddDeviceToPermissionsTable
Adds a device to the Permission Configuration Table, where aDevAddr is the IEEE device address, and
permissionCategory is the bit mask representing the device permissions. Adding a device in this table also
adds the device to the address map.

uint8_t AddDeviceToPermissionsTable
(
 zbIeeeAddr_t aDevAddr,
 permissionsFlags_t permissionsCategory
};

13.1.2 RemoveDeviceFromPermissionsTable
Removes a device from the Permission Configuration Table. This function only removes the device from
the Permissions Configuration Table and not from the address map.

uint8_t RemoveDeviceFromPermissionsTable
(
 zbIeeeAddr_t aDevAddr
)

Permission Configuration Table

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

13-2 Freescale Semiconductor

13.1.3 RemoveAllFromPermissionsTable
Removes all Permission Configuration Table entries.

void RemoveAllFromPermissionsTable(void)

13.1.4 GetPermissionsTable
Obtains all the active entries in the Permission Configuration Table.

index_t GetPermissionsTable
(
 uint8_t * pDstTable
)

13.1.5 SetPermissionsTable
Sets an entry in the Permission Configuration Table.

void SetPermissionsTable
(
 index_t entryCounter,
 uint8_t * payload
)

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 14-1

Chapter 14
Frequency Agility
BeeStack supports an example implementation of a frequency agility channel manager which
demonstrates how frequency agility could be implemented.

14.1 Frequency Agility Overview
The frequency agility module is described in Annex E of the ZigBee Specification, ZigBee Alliance,
October 2007, and in Section 7.6.2 of the ZigBee 2007 specification. The following sections describe the
example implementation in BeeStack. All source code is available in the AppStackImpl.c. All functions
associated to Frequency Agility start with FA_.

The ZigBee specification defines one ZDP request and one ZDP indication used for frequency agility. the
request mgmt_update_request requests a change of attributes like a channel mask, requests an energy scan
or a channel change. The indication Mgmt_update_notify informs the system about transmission failures
or results of an energy scan. See the ZigBee specification for further details.

NOTE
The ZigBee Specification refers to the frequency agility “channel” manager
in several ways; (Channel master, channel manager, etc.) From a ZDP
perspective, it is referred to as the nwk/network manager.

The main component of the Frequency Agility module is the channel manager. The channel manager
makes the decision when to change the network to another channel. Several issues must be considered in
the network manager:

• Zigbee 2007 and 2006 router detection
• Should the application decide when to change the channel
• How are energy scan reports analyzed
• Procedure to change the channel without leaving the network, for the RxOnWhenIdle = TRUE
• Router selection for Energy Scan Detection scan

BeeStack provides an example implementation of a frequency agility state machine.

14.1.1 Enabling the State Machine
The channel manager is optional and is enabled when frequency agility on the coordinator is enabled. It
can also be present on another node by setting the nwk manager property.

NOTE
There can only be one channel manager in a network and it will typically be
the coordinator.

Frequency Agility

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

14-2 Freescale Semiconductor

Every node is capable of being a channel manager if the following flags are enabled:
• gFrequencyAgilityCapability_d
• gEndDevCapability_d

14.1.2 Monitoring Indications
The channel manager monitors Mgmt_NWK_Update_notify() indications sent by other nodes in the
network (see channel statistics). If the channel manager receives X (gMaxIncomingErrorReports_c)
Mgmt_NWK_Update_notify indications in Y (gMaxTimeoutForIncomingErrorReports_c) amount of
time, then an energy scan process is initiated.

The channel manager is found in AppStackImpl.c, in the FA_Process_Mgmt_NWK_Update_notify()
function.

14.1.3 Energy Scan Process
The channel manager first does a local energy scan and then afterward requests
Z(gMinNumberOfRouters_c) routers from the neighbor table to also do an energy scan. After waiting for
the results of the energy scans or a time-out, the channel manager sends an error report to the application,
and the application requests a "channel change", calling the FA_SelectChannelAndChange() function.

14.1.4 Application Control
All mgmt_update_notify indications and received mgmt_update_requests are sent to the ZDO callback
handler so that the application can be in full control and the example implementation
(FA_Process_Mgmt_NWK_Update_notify()) can be removed or changed by the application.

14.1.5 Transmission of a mgmt_update Notify
A node sends a mgmt_nwk_update_notify telegram every time its network layer reports a Tx Failure
Report (NlmeTxReport) where there is X(gMaxTxFailuresPercentage_c) transmission failures. An
NlmeTxreport is sent after Y transmissions (gMaxNumberOfTxAttempts_c).

If this occurs on the channel master itself, it does not send a mgmt_nwk_update_notify but directly starts
the energy scan process.

14.1.6 Channel Change
When a channel change is requested, a mgmt_update_request is sent out on a broadcast address requesting
the network to change channel, and the nodes will wait for a broadcast time-out before actually changing
channels. In Freescale's implementation, the nodes will not do a nwk-rejoin but will simply change
channels. A nwk-rejoin is not performed because routers would then "lose" their children.

Frequency Agility

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 14-3

14.1.7 Channel Statistics
When an error report is received, a channel change is initialized. The best channel is selected based on the
statistics collected when receiving a mgmt_NWK_update_notify indication. An up/down averaging
method is used for generating statistics. Each channel is represented with an 8 bit value which is initialized
to a middle value of 0x7f. With each report, each channel is updated up or down based on the value for
that channel in the report. The system uses the following ranges:

• 0xf0 - 0xff = +5
• 0xc0 - 0xef = +3
• 0xa0 - 0xbf = +1
• 0x7f - 0x9f = 0
• 0x50 - 0x7f = -1
• 0x25 - 0x4f = -3
• 0x00 - 0x24 = -5

The statistics are kept in a global (for averaging) and may be cleared with a ZDO reset.

14.2 Enabling Frequency Agility
Frequency agility example implementation is enabled by setting the gFrequencyAgilityCapability_d to
TRUE in the Beestackconfiguration.h. In order for the implementation to work, the ZDP primitives must
also be enabled. The gMgmt_NWK_Update_req_d and gMgmt_NWK_Update_notify_d options in the
Beestackconfiguration.h file must also be set to TRUE.

By default, the coordinator is set as the Network manager. This can be changed with the
gNetworkManagerCapability_d define. When this flag is set to true, then the node becomes a network
manager. This is set in the server mask. This flag only affects coordinators and routers.

NOTE
The ZDP primitives can also be enabled without enabling the example
implementation in case another implementation is needed.

14.3 Frequency Agility ZDP Primitives
To enable sending the ZDP commands Over the Air (OTA) from the application layer, it is necessary to
send them through the ASL-ZDP interface. The following two functions are provided.

14.3.1 MGMT_NWK_Update_req
The ASL_Mgmt_NWK_Update_req is available when the flag gMgmtNwkUpdateRequest_d is True and
it is not an End Device and gNwkManagerCapability_d =True.

Prototype
void ASL_Mgmt_NWK_Update_req(zbNwkAddr_t aDestAddress, zbChannels_t aChannelList, uint8_t
iScanDuration, uintn8_t iScanCount);

Frequency Agility

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

14-4 Freescale Semiconductor

14.3.2 MGMT_NWK_Update_Notify
The ASL_Mgmt_Nwk_Update_Notify function is available when the flag gMgmtNwkUpdateNotify_d is
True and it is not an End Device and gNwkManagerCapability_d =False.

Prototype
void ASL_Mgmt_NWK_Update_Notify(zbNwkAddr_t aDestAddress, zbChannels_t aScannedChannels,
uint16_t iTotalTransmissions, uint16_t iTransmissionFailures, uint8_t
iScannedChannelListCount, zbEnergyValue_t *paEnergyVslues, zbStatus_t status);

14.4 Frequency Agility State Machine Primitives
The following section describes the Frequency Agility state machine primitives.

14.4.1 ASL_EnergyScanRequest
This function requests the lower layer to scan the channel.

Prototype
void ASL_EnergyScanRequest(zbChannels_t aChannelList, uint8_t duration);

14.4.2 ASL_ChangeChannel
This function requests the lower layer to change to a specific channel.

Prototype
void ASL_ChangeChannel(uint8_t channelNumber);

14.4.3 FA_Process_Mgmt_NWK_Update_request
This function is available for any RxOnWhenIdle device, to process the incoming
Mgmt_NWK_Update_Request (2.4.3.3.9 Mgmt_NWK_Update_req). Upon receipt, the Remote Device
determines from the contents of the ScanDuration parameter whether this request is an update to the
apsChannelMask and nwkManagerAddr parameters, a channel change command, or a request to scan
channels and report the results.

Prototype
zbSize_t FA_Process_Mgmt_NWK_Update_request(zbMgmtNwkUpdateRequest_t *pMessageComingIn, void
*pMessageGoingOut, zbNwkAddr_t aSrcAddrr);

Frequency Agility

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 14-5

14.4.4 FA_Process_Mgmt_NWK_Update_notify
This function is only available for the Network Manager (Channel Master), to process the incoming
Mgmt_NWK_Update_Notify. Upon receipt of an unsolicited Mgmt_NWK_Update_notify, the network
manager must evaluate if a channel change is required in the network. For this there are several steps to
follow:

Request other interference reports using the Mgmt_NWK_Update_req command. The network manager
may request data from randomly selected routers in the network. (This is described in the Zigbee spec R17-
Annex E, for the purpose of giving the user a simple example of how and where this is done and how it
can be adjusted as needed).

Prototype
void FA_Process_Mgmt_NWK_Update_notify(zbMgmtNwkUpdateNotify_t *pMessageComingIn);

14.4.5 FA_ChannelMasterStateMachine
The state machine used by the network manager to keep track of the FA procedure described in the ZigBee
specification 053474r17 Annex E, uses a task and events. This state machine is also used by the routers
participating in the FA procedure.

Prototype
void FA_ChannelMasterStateMachine(event_t events);

14.4.6 FA_ProcessEnergyScanCnf
The function is used either by the Network manager or by any other device participating on the FA process.
This function catches every single energy scan confirm from the Nwk layer and processes them.

Prototype
void FA_ProcessEnergyScanCnf(nlmeEnergyScanCnf_t *pScanCnf /* The Nlme scan confirm. */);

14.4.7 FA_ProcessNlmeTxReport
This function catches every time that the nwk layer sends a Tx report, to keep track of the transmission
attempts and failures.

Prototype
void FA_ProcessNlmeTxReport(nlmeNwkTxReport_t *pNlmeNwkTxReport);

Frequency Agility

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

14-6 Freescale Semiconductor

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor 15-1

Chapter 15
Interpan Communication
BeeStack supports the Interpan communication method specified by the Smart Energy/AMI application
profile specification. The Interpan communication feature allows for communication outside the ZigBee
network to very simple devices. For example, a refrigerator magnet may receive information about energy
cost and display that information it using a multi-colored LED.

15.1 Interpan Communication Overview
The Interpan Communication feature is enabled by gInterPanCommunicationEnabled_c define in
Beestackconfiguration.h to TRUE. Setting it to FALSE reduces the stack code size.

Interpan communication can also be enabled in the ZTC by setting the gSAPMessagesEnableInterPan_d
define to TRUE.

NOTE
It is not possible to hook the Interpan SAPS.

BeeStack provides an interface for sending and receiving InterPan packets, AF_InterPanDataRequest()
and InterPan_APP_SapHandler(). Detailed information on how to use the InterPan method can be found
in the Smart energy/AMI application profile specification.

15.2 AF InterPan Data Request
The AF_InterPanDataRequest() function sends out an InterPan Data request out of the radio. Only 1
request pending is allowed.

The prototype is:
zbStatus_t AF_InterPanDataRequest(InterPanAddrInfo_t *pAddrInfo, uint8_t payloadLen, void
*pPayload, zbApsCounter_t *pConfirmId);

The function can return the following status:
zbSuccess_c If request created and sent. Confirm comes back to the application through the

InterPan_APP_SapHandler().
gZbNoMem_c Not enough memory to create the request. Wait and try again later.
gZbBusy_c Message can not be sent (1 request is already pending.
gInvalidParameter_c Invalid parameter supplied in address information

Interpan Communication

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

15-2 Freescale Semiconductor

15.3 AF InterPan Data Indications
InterPan Data Indications arrives in the InterPan data indication sap handler, InterPan_APP_SapHandler().

Opposite AF Data Indications the InterPan Data indication messages must freed using the MSG_Free()
instead of the AF_FreeDataIndicationMsg(). The InterPan_APP_SapHandler() can be found in
BeeAppInit.c

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor A-1

Appendix A
Porting from BeeStack 2006 to BeeStack 2007
This appendix describes how to port from the ZigBee 2006 compliant version of BeeStack to the ZigBee
2007 compliant version of BeeStack.

Perform the following steps to port from a BeeStack 2006 solution to a BeeStack 2007 solution:
• Upgrade the BeeStack 2006 solution file to BeeStack 2007 solution file
• Consider enabling any new major features
• Apply changes required in the application

The following chapters describe each of these steps in detail.

A.1 Upgrading the Solution File
The BeeKit Wireless Connectivity Toolkit allows users to upgrade a solution file to a newer Codebase. The
BeeKit Wireless Connectivity Toolkit User’s Guide contains a detailed description of how to upgrade a
solution file. Follow these steps to upgrade the solution file from BeeStack 2006 to BeeStack 2007.

NOTE
It is not possible to upgrade an HCS08 solution to an MC1322x (ARM7)
solution. It is also not possible to upgrade from Codebase version 2.0.0 or
or older to Codebase version 3.0.0 within BeeKit automatically. If
upgrading from a Codebase version 2.0.0 or older, open the existing solution
and record all the properties marked with BOLD (properties changed to a
value different than their default value). Open the new Codebase, re-create
the projects, apply the recorded changes and continue exporting the
solution.

A.2 Enabling New Features
The BeeStack 2007 Codebase provides a range of new features that should be considered when porting:

NOTE
Enabling these new features impacts code size.

• Fragmentation - Allows sending larger packets than a standard MAC frame can contain by utilizing
fragmentation.

• Frequency agility - Allows moving the network to a different channel in case a lot of noise is
detected on an RF channel.

• ZDP primitives for Frequency agility - Enabling only the primitives allows the application
developer to send the ZDP commands and then interpret them in the application.

Porting from BeeStack 2006 to BeeStack 2007

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

A-2 Freescale Semiconductor

• BeeStack CodeBase 3.0.0 and higher includes a new Device type (combo), new ZDO, link keys,
ZigBee Pro Feature Set, Startup Attribute Set and Smart Energy application templates.

A.3 Applying Changes In The Application
A few changes in the application are needed to completely port an application from BeeStack 2006 to
BeeStack 2007. The easiest porting method is to export the upgraded solution file and then compare the
beeapp.c file in the work space with the one that the application developer has modified.

The following tasks must be performed:
• Modify the application NVM data set
• Use AF_FreeDataIndicationMsg() instead of MSG_Free() for freeing Data indications
• Insert code for handling received Frequency Agility messages

The following sections describe each of these tasks in detail.

A.3.1 Modifying The Application NVM Data Set
The gaNvAppDataSet structure has changed in the first line as follows:

From:
NvDataItemDescription_t const gaNvAppDataSet[] = {
 {&gBeeStackParameters, sizeof(beeStackParameters_t)}, /* BeeStackSpecific */
............

To:
NvDataItemDescription_t const gaNvAppDataSet[] = {

 gAPS_DATA_SET_FOR_NVM, /* APS layer NVM data */

............

A.3.2 Replacing MSG_Free() with AF_FreeDataIndicationMsg()
The BeeAppDataIndication() function receives the AF data indications. To make sure that all fragments in
a fragmented data indication is freed the AF_FreeDataIndicationMsg() must be used instead.

Replace MSG_Free() with AF_FreeDataIndicationMsg() every place where a Data indication is freed.

NOTE
If the application is based on the WirelessUART, this must be done in
RxZigBeeData().

Porting from BeeStack 2006 to BeeStack 2007

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor A-3

A.3.3 Inserting Code for Handling Frequency Agility
Depending on which application template is used, either more, less, or no code must be inserted into the
application. Doing a compare of the new and old beeapp.c file is the best way to determine what needs to
be copied.

NOTE
If the application is built on the HA template, the changes are made in the
ASL files and the beeapp.c does not need to be updated.

For the GenericApp, add the following code:

In BeeAppInit():

/* Get the statemachine for FA into start state. */
 FA_StateMachineInit();
}

Update the BeeAppZdpCallBack() to look as follows:

void BeeAppZdpCallBack
 (
 zdpToAppMessage_t *pMsg,
 zbCounter_t counter
)
{
 uint8_t event;
 zbMatchDescriptorResponse_t * pMatchRsp;
 (void)counter;

 /* get the event from ZDP */
 event = pMsg->msgType;
 if(event == gzdo2AppEventInd_c) /* many possible application events */
 event = pMsg->msgData.zdo2AppEvent;

 /* got a response to match descriptor */
 switch(event) {

 case gMatch_Desc_rsp_c:
 pMatchRsp = &(pMsg->msgData.matchDescriptorResponse);
 if (pMatchRsp->status == gZbSuccess_c) {

 /* indicate matched */
 LED_SetLed(LED3, gLedOn_c);

 /* remember destination (nwkaddr + endpoint) */
 gAccelDstEndPoint = pMatchRsp->matchList[0]; /* match to first endpoint */
 Copy2Bytes(gaAccelDstAddr, pMatchRsp->aNwkAddrOfInterest);
 gfAccelFoundDst = TRUE;

 /* start sending the data */
 giAccelDemoState = accelStateStart_c;
 TS_SendEvent(gAppTaskID, accelEventState_c);
 }

Porting from BeeStack 2006 to BeeStack 2007

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

A-4 Freescale Semiconductor

 /* couldn't find match, give up */
 else
 LED_SetLed(LED3, gLedOff_c);
 break;

 /* network has been started */
 case gZDOToAppMgmtZCRunning_c:
 case gZDOToAppMgmtZRRunning_c:
 case gZDOToAppMgmtZEDRunning_c:
 if (appState == mStateIdle_c) {

 appState = mStateZDO_device_running_c;

 /* stop the flashing and indicate the device is running (has joined the network) */
 LED_SetLed(LED1, gLedOn_c);
 LCD_WriteString(1,(uint8_t *)"Running Device");
 }
 break;

 case gNlmeTxReport_c:
 FA_ProcessNlmeTxReport(&pMsg->msgData.nlmeNwkTxReport);
 break;

 case gMgmt_NWK_Update_notify_c:
 /* Already handle in ZDP. */
 break;

 case gNlmeEnergyScanConfirm_c:
 FA_ProcessEnergyScanCnf(&pMsg->msgData.energyScanConf);
 break;

 case gChannelMasterReport_c:
 FA_SelectChannelAndChange();
 break;
 }
 if (pMsg->msgType == gNlmeEnergyScanConfirm_c)
 MSG_Free(pMsg->msgData.energyScanConf.resList.pEnergyDetectList);

 /* free the message from ZDP */
 MSG_Free(pMsg);
}

A.3.4 New ZDO Features
BeeStack CodeBase 3.0.0 and above allows more control over how the ZDO initializes the device.
Consider this extra control if any of these new features can enhance the application that is being ported.
See Section 6.2, “General ZDO Interfaces (Codebase Version 3.0.0 and Higher)”.

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor B-1

Appendix B
Table and Buffer Sizes
BeeStack contains several tables and buffers that can be adjusted to potentially free up memory or to
enhance stack performance. This appendix describes the tables and buffers that impact stack
size/performance and the effect that making adjustments to them will have on the system.

B.1 Message Buffer Configuration System
BeeStack uses and shares a pool of message buffers with the MAC layer to prevent heap fragmentation.
Each buffer is a fixed size in an array. Over-the-air messages are called "big messages/buffers", and smaller
messages, such as internal confirmations are called “small buffers/message”. The RAM has a limited
number of these buffers available. The gTotalBigMsgs_d and gTotalSmallMsgs_d defines in the
AppToMacPhyConfig.h header file set the number of these buffers available in the system. The Freescale
IEEE, 802.15.4 MAC documentation contains more details on the message buffer system. A Big buffer is
about 150-159 bytes depending on the platform used and the stack configuration. Increasing the number
of buffers, increases the number of messages that the node can contain. Decreasing the number of buffers,
increases the chance of data starvation in dense networks.

Several properties in BeeStack have an indirect relation to the number of buffers and should be adjusted if
the default buffer number is modified. These properties are as follows:

B.1.1 gHandleTrackingTableSize_c
This property is the maximum number of “Handle Tracking Table” entries which determines how many
simultaneous messages from the higher layer the NWK layer can support. (That is, everything that ends
up being a network layer message such as ZDP commands, APS commands and APS data.)
Range 1 - 255
Default 10

B.1.2 gPacketsOnHoldTableSize_c
This property is the maximum number of “Packets on Hold Table Size” entries which determines how
many simultaneous messages the network layer can hold until they get routed. If this property is increased,
the number of big buffers should also be increased.
Range 1 - 255
Default 2

Table and Buffer Sizes

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

B-2 Freescale Semiconductor

B.1.3 gHttMaxIndirectEntries_c
This property is the maximum number of “Indirect Entries” held in the Handle Tracking table. Freescale
recommends that the number of messages sent to the MAC for polling ZigBee End-Devices does not
exceed the amount of big buffers minus three.
Range 1 - 255
Default 4

B.1.4 gApsMaxDataHandlingCapacity_c
Determines the number of simultaneous messages that the APS can handle from higher layers (both for
the ZDP and the application). If this limit is reached, the system indicates busy (gZbBusy_c).

If increasing this value, users must also increase the number of timers in TMR_Interface.h with the same
amount because one timer is required per message.
Range 1 - 7
Default 2

B.1.5 gDefaulEntriesInSKKEStateMachine_c
Determines the number of simultaneous SKKE processes can be handled at the same time (number of
devices).
Range One to as many big buffers that are available after the joining process.
Default 5

B.1.6 gDefaultEntriesInEAStateMachine_c
Determines the number of simultaneous “Entity Authentications” that can be handled at the same time
(from different devices).
Range One to as many big buffers that are available after the joining process.
Default 3

B.2 Address Map
The Address Map contains the mapping of the 64 bit IEEE addresses to 16 bit addresses. The address map
is also used by the binding table and by the security system when link keys (on the trust center) are used
because they both are required to map a 64 bit address to a 16 bit address. It is important that this table is
big enough to contain an entry for each binding and each device that is given a link key.

The table entry size is 10 bytes, and should be increased depending on binding table entries and link key
relations. The property name is gApsMaxAddrMapEntries_c and the default setting is nine (9).

Table and Buffer Sizes

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

Freescale Semiconductor B-3

NOTE
The address map is saved to NVM, so if its size is increased, verify that the
table does not overflow the NVM page it resides on. Refer to the nv_data.c
file to review NVM page information.

B.3 Binding Table
The Binding table contains the source bindings for the device it resides on. Each entry in the table contains
a list of cluster IDs (services). If two devices bind multiple clusters on the same endpoint, only one binding
table entry is required. This optimizes RAM consumption. For example, a dimmable switch and a light
that typically would bind both the on/off and the level control cluster.

A binding table entry is 5 bytes + (2 * gMaximumApsBindingTableClusters_c).

The total number of binding table entries is set with the gMaximumApsBindingTableEntries_c property.

NOTE
The Binding table is saved to NVM, so if its size is increased, verify that the
table does not overflow the NVM page it resides on. Refer to the nv_data.c
file to review NVM page information.

B.4 Neighbor Table
The Neighbor table contains all the information of the child nodes and neighbors and is 15 bytes per entry
for non-secure networks. The Neighbor table is adjusted using the properties option in BeeKit or in the
beestackconfiguration.h file, depending on device type:
Router gRouterNwkInfobaseMaxNeighborTableEntry_c
Coordinator gCoordinatorNwkInfobaseMaxNeighborTableEntry_c
End device gEndDevNwkInfobaseMaxNeighborTableEntry_c

If security is used, then additional memory is required to store a security frame counter for each device in
the table. This is 10 bytes per neighbor table entry. Freescale recommends that the size of this table not be
adjusted by the user.

NOTE
The Neighbor table is saved to NVM, so if its size is increased, verify that
the table does not overflow the NVM page it resides on. Refer to the
nv_data.c file to review NVM page information.

B.5 Link Key Table
The Link Key table contains the security material required for storing and maintaining a link key. If link
keys are used, extra security material from this table is used and one entry per link key is supported. Link
keys are enabled by setting the gApsLinkKeySecurity_d property to TRUE. The number of entries in the
link key table/number of link keys supported is set using the gApsMaxLinkKeys_c property. The size of

Table and Buffer Sizes

BeeStack™ Software Reference Manual for ZigBee 2007, Rev. 1.1

B-4 Freescale Semiconductor

the link key security material/link key table entry is 26 bytes. At least one address map entry per link key
is required.

NOTE
The Link Key Table/security material is saved to NVM, so if its size is
increased, verify that the table does not overflow the NVM page it resides
on. Refer to the nv_data.c file to review NVM page information.

B.6 Routing and Route Discovery Tables
BeeStack has two Routing tables and one Route Discovery table. The regular Route table is adjusted using
the gNwkInfobaseMaxRouteTableEntry_c property. Each entry is six bytes.

If the device is a concentrator (enabled with the gConcentratorFlag_d property, which is only valid on
ZigBee PRO Feature set) the device will also contain a second Route table labeled as the Source Routing
table. The Source Routing table is adjusted by the gNwkInfobaseMaxSourceRouteTableEntry_c property.
Each entry is six bytes on HCS08 based transceivers like the MC1320x and MC1321x and eight bytes on
ARM7 based transceivers like the MC1322x. The Route Discovery table is adjusted by the
gNwkRoutingMaxRouteDiscoveyTableEntry_c property. Each entry is 29 bytes.

Freescale recommends not adjusting the Routing and Route Discovery tables to a value larger than what
is required as a minimum by the Stack profile. In an interoperable network, users can not expect other
vendor nodes to contain more than what the minimum requirements.

NOTE
None of the routing and route discovery tables are stored in NVM.

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Reference Materials
	Chapter 1 Introduction
	1.1 What This Document Describes
	1.2 What This Document Does Not Describe

	Chapter 2 ZigBee Overview
	2.1 Network Elements
	2.1.1 Device Types
	2.1.2 Star Network
	2.1.3 Tree Network
	2.1.4 Mesh Network

	2.2 ZigBee Feature Sets, Stack Profiles and Application Profiles
	2.2.1 Stack Profile 0x01 (ZigBee Feature Set)
	2.2.2 Stack Profile 0x02 (ZigBee Pro Feature Set)
	2.2.3 Other ZigBee Configurations
	2.2.4 Application Profiles

	2.3 Routing
	2.3.1 Tree Routing
	2.3.2 Mesh Routing
	2.3.3 Many-to-one and Source Routing

	2.4 Groupcast and Multicast
	2.5 Personal Area Network
	2.6 Channels
	2.7 Device and Service Discovery
	2.8 Addressing/Messaging
	2.9 Binding
	2.10 Application Elements
	2.10.1 Applications
	2.10.2 Attributes
	2.10.3 Clusters
	2.10.4 Endpoints

	Chapter 3 BeeStack Features
	3.1 BeeStack Task Scheduler
	3.2 BeeStack Application Programming Interface
	3.3 Source Files - Directory Structure
	3.4 Miscellaneous Source Files

	Chapter 4 Application Framework
	4.1 AF Types
	4.2 Endpoint Management
	4.2.1 Simple Descriptor
	4.2.2 Register Endpoint
	4.2.3 De-register Endpoint
	4.2.4 Get Endpoint
	4.2.5 Find Endpoint Descriptor

	4.3 Message Allocation and Deallocation
	4.3.1 AF_MsgAlloc
	4.3.2 AF_MsgAllocFragment
	4.3.3 AF_FreeDataIndicationMsg
	4.3.4 AF_FreeDataRequestFragments

	4.4 AF Data Requests
	4.5 AF Data Indications

	Chapter 5 Application Support Sub-layer
	5.1 Direct and Indirect Data Addressing
	5.2 APS Layer Interface
	5.2.1 Get Request
	5.2.2 Set Request
	5.2.3 Get Table Entry
	5.2.4 Set Table Entry
	5.2.5 Add to Address Map
	5.2.6 Remove from Address Map
	5.2.7 Find IEEE Address in Address Map
	5.2.8 Get NWK Address from IEEE Address
	5.2.9 Get IEEE Address from NWK Address

	5.3 Binding
	5.3.1 Bind Request
	5.3.2 Unbind Request
	5.3.3 Find Binding Entry
	5.3.4 Find Next Binding Entry
	5.3.5 Clear Binding Table
	5.3.6 Add Group Request
	5.3.7 Remove Group Request
	5.3.8 Remove Endpoint from All Groups Request
	5.3.9 Identify Endpoint Group Membership
	5.3.10 Group Reset Function

	5.4 AIB Attributes

	Chapter 6 ZigBee Device Objects
	6.1 ZDO State Machine
	6.2 General ZDO Interfaces (Codebase Version 3.0.0 and Higher)
	6.2.1 Get State Machine
	6.2.2 Start ZDO State Machine
	6.2.3 Stop With Mode Select
	6.2.4 Stop ZDO State Machine
	6.2.5 Stop ZDO and Leave

	6.3 General ZDO Interfaces (CodeBase Versions Before 3.0.0)
	6.3.1 Get State Machine
	6.3.2 Start ZDO State Machine without NVM
	6.3.3 Start ZDO State Machine with NVM
	6.3.4 Stop ZDO State Machine
	6.3.5 Stop ZDO and Leave

	6.4 Device Specific ZDO Interfaces
	6.4.1 ZC State Machine
	6.4.2 ZR State Machine
	6.4.3 ZED Machine State

	6.5 Selecting PAN ID, Channel and Parent

	Chapter 7 ZigBee Device Profile
	7.1 Application Support Layer
	7.2 Device and Service Discovery
	7.2.1 Device Discovery
	7.2.2 Service Discovery

	7.3 Primary Discovery Cache Device Operation
	7.4 Binding Services
	7.5 ZDP Functions and Macros
	7.5.1 ZDP Register Callback
	7.5.2 ZDP NLME Synchronization Request

	7.6 Device and Service Discovery - Client Services
	7.6.1 Network Address Request
	7.6.2 IEEE Address Request Command
	7.6.3 Node Descriptor Request
	7.6.4 Power Descriptor Request
	7.6.5 Simple Descriptor Request
	7.6.6 Active Endpoint Request
	7.6.7 Match Descriptor Request
	7.6.8 Complex Descriptor Request
	7.6.9 User Descriptor Request
	7.6.10 Discovery Cache Request
	7.6.11 End Device Announce
	7.6.12 User Descriptor Set Request
	7.6.13 Server Discovery Request
	7.6.14 Discovery Cache Storage Request
	7.6.15 Store Node Descriptor on Primary Cache Device
	7.6.16 Store Power Descriptor Request
	7.6.17 Active Endpoint List Storage Request
	7.6.18 Simple Descriptor Storage Request
	7.6.19 Remove Node Cache Request
	7.6.20 Find Node Cache Request

	7.7 Binding Management Service Commands
	7.7.1 End Device Bind Request
	7.7.2 Bind Request
	7.7.3 Unbind Request
	7.7.4 Local Bind Register Request
	7.7.5 Replace Device Request
	7.7.6 Store Backup Bind Entry Request
	7.7.7 Remove Entry from Backup Storage
	7.7.8 Backup Binding Table Request
	7.7.9 Recover Binding Table Request
	7.7.10 Source Binding Table Backup Request
	7.7.11 Recover Source Binding Table Request

	7.8 Network Management Services
	7.8.1 Management Network Discovery Request
	7.8.2 Management LQI Request
	7.8.3 Routing Discovery Management Request
	7.8.4 Management Bind Request
	7.8.5 Management Leave Request
	7.8.6 Management Permit Joining
	7.8.7 Management Network Update Request
	7.8.8 Management Network Update Notify
	7.8.9 Management Cache

	7.9 ZDO Layer Status Values

	Chapter 8 Network Layer
	8.1 Channel and PAN Configuration
	8.1.1 Channel Configuration
	8.1.2 PAN ID
	8.1.3 Beacon Notify
	8.1.4 NWK Layer Interfaces
	8.1.5 NWK Layer Filters

	8.2 NWK Information Base

	Chapter 9 Application Support Layer
	9.1 ASL Utility Functions
	9.2 ASL Data Types
	9.3 ASL Utility Functions
	9.3.1 Initialize User Interface
	9.3.2 Set Serial LEDs
	9.3.3 Stop Serial LEDs
	9.3.4 Set LED State
	9.3.5 Write to LCD
	9.3.6 Change User Interface Mode
	9.3.7 Display Current User Interface Mode
	9.3.8 Update Device
	9.3.9 Handle Keys
	9.3.10 Display Temperature

	Chapter 10 BeeStack Common Functions
	10.1 BeeStack Common Prototypes
	10.2 Common Network Functions

	Chapter 11 User-Configurable BeeStack Options
	11.1 Compile-Time Options
	11.2 More Compile-time Options

	Chapter 12 BeeStack Security
	12.1 Security Overview
	12.1.1 Security Modes

	12.2 Security Implementation
	12.3 Security Configuration Properties
	12.3.1 mDefaultValueOfNwkKeyPreconfigured_c
	12.3.2 mDefaultValueOfNwkSecurityLevel_c
	12.3.3 mDefaultValueOfNetworkKey_c
	12.3.4 gDefaultValueOfMaxEntriesForExclusionTable_c
	12.3.5 mDefaultValueOfNwkKeyType_c
	12.3.6 mDefaultValueOfTrustCenterKeyType_c
	12.3.7 mDefaultValueOfTrustCenterKeyType_c
	12.3.8 mDefaultValueOfTrustCenterKey_c
	12.3.9 mDefaultValueOfApplicationKeyType_c
	12.3.10 gSKKESupported_d
	12.3.11 gApsLinkKeySecurity_d

	12.4 ZigBee Trust Center Authentication
	12.5 IEEE address join filter

	Chapter 13 Permission Configuration Table
	13.1 Permission Configuration Table API
	13.1.1 AddDeviceToPermissionsTable
	13.1.2 RemoveDeviceFromPermissionsTable
	13.1.3 RemoveAllFromPermissionsTable
	13.1.4 GetPermissionsTable
	13.1.5 SetPermissionsTable

	Chapter 14 Frequency Agility
	14.1 Frequency Agility Overview
	14.1.1 Enabling the State Machine
	14.1.2 Monitoring Indications
	14.1.3 Energy Scan Process
	14.1.4 Application Control
	14.1.5 Transmission of a mgmt_update Notify
	14.1.6 Channel Change
	14.1.7 Channel Statistics

	14.2 Enabling Frequency Agility
	14.3 Frequency Agility ZDP Primitives
	14.3.1 MGMT_NWK_Update_req
	14.3.2 MGMT_NWK_Update_Notify

	14.4 Frequency Agility State Machine Primitives
	14.4.1 ASL_EnergyScanRequest
	14.4.2 ASL_ChangeChannel
	14.4.3 FA_Process_Mgmt_NWK_Update_request
	14.4.4 FA_Process_Mgmt_NWK_Update_notify
	14.4.5 FA_ChannelMasterStateMachine
	14.4.6 FA_ProcessEnergyScanCnf
	14.4.7 FA_ProcessNlmeTxReport

	Chapter 15 Interpan Communication
	15.1 Interpan Communication Overview
	15.2 AF InterPan Data Request
	15.3 AF InterPan Data Indications

	Appendix A Porting from BeeStack 2006 to BeeStack 2007
	A.1 Upgrading the Solution File
	A.2 Enabling New Features
	A.3 Applying Changes In The Application
	A.3.1 Modifying The Application NVM Data Set
	A.3.2 Replacing MSG_Free() with AF_FreeDataIndicationMsg()
	A.3.3 Inserting Code for Handling Frequency Agility
	A.3.4 New ZDO Features

	Appendix B Table and Buffer Sizes
	B.1 Message Buffer Configuration System
	B.1.1 gHandleTrackingTableSize_c
	B.1.2 gPacketsOnHoldTableSize_c
	B.1.3 gHttMaxIndirectEntries_c
	B.1.4 gApsMaxDataHandlingCapacity_c
	B.1.5 gDefaulEntriesInSKKEStateMachine_c
	B.1.6 gDefaultEntriesInEAStateMachine_c

	B.2 Address Map
	B.3 Binding Table
	B.4 Neighbor Table
	B.5 Link Key Table
	B.6 Routing and Route Discovery Tables

